BZOJ 2142 礼物(拓展Lucas,中国剩余定理)【BZOJ修复工程】

这是一篇关于如何利用拓展Lucas定理解决BZOJ 2142题目的文章。文章介绍了题目背景,即小E在圣诞节送礼物的问题,需要计算不同送礼方案的数量模P。内容包括输入输出格式,数据规模和约定,并提供了样例。作者强调了在非质数模下使用拓展Lucas定理的重要性,以及如何应用这个定理来求解问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整理的算法模板合集: ACM模板

点我看算法全家桶系列!!!

实际上是一个全新的精炼模板整合计划


题目链接

https://hydro.ac/d/bzoj/p/2142

hydro 的 BZOJ 修复工程 !(我也去领了一点题慢慢修着玩,这题就是我修的嘿嘿嘿)

题目描述

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了 n n n 件礼物,打算送给 m m m 个人,其中送给第 i i i 个人礼物数量为 w i w_i wi 。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模 P P P 后的结果。

输入格式

输入的第一行包含一个正整数 P P P ,表示模数;

第二行包含两个整整数 n n n m m m ,分别表示小E从商店购买的礼物数和接受礼物的人数;

以下 m m m 行每行仅包含一个正整数 w i w_i wi ,表示小E要送给第 i i i 个人的礼物数量。

输出格式

若不存在可行方案,则输出 “Impossible” ,否则输出一个整数,表示模 P P P 后的方案数。

输入样例

100 
4 2 
1
2

输出样例

12

数据规模和约定

P = p 1 c 1 × p 2 c 2 × p 3 c 3 × ⋯ × p t c t P=p_1^{c_1} \times p_2^{c_2} \times p_3^{c_3} \times \cdots \times p_t ^ {c_t} P=p1c1×p2c2×p3c3××ptc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁凡さん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值