【时间序列】LSTM预测模型

该博客介绍了如何利用MATLAB的Deep Learning Toolbox构建基本的LSTM神经网络,对时间序列数据进行预测。通过加载数据,归一化,训练模型,预测并反归一化,实现对时间序列的分析和可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

基本的LSTM预测模型


基本的LSTM预测模型

可以使用MATLAB中的Deep Learning Toolbox中的LSTM神经网络对时间序列数据进行预测。

以下是一个基本的LSTM预测模型的代码示例:

% 1. 准备数据集
data = csvread('data.csv'); % 从文件中读取数据
trainData = data(1:500, :); % 前500个样本作为训练集
testData = data(501:end, :); % 后面的样本作为测试集

% 2. 进行数据归一化处理
[trainDataNorm, trainParams] = normalizeData(trainData); % 对训练集进行归一化
testDataNorm = normalizeData(testData, trainParams); % 对测试集进行归一化,使用训练集的参数

% 3. 构建LSTM模型
numFeatures = size(data, 2) - 1; % 特征数
numResponses = 1;                % 输出数(待预测的时间序列)
numHiddenUnits = 10;             % 隐藏层节点数
numTimeSteps = 10;               % 时间序列长度
net = createLSTM(numFeatures, numResponses, numHiddenUnits, numTimeSteps
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式职场

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值