童年生活二三事————斐波那契数列(递推)

本文探讨了NowCoder跳跃问题,即计算从第0阶到第N阶的不同走法数量,通过分析得出该问题符合斐波那契数列特性,并提供了使用动态规划解决该问题的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 题目

童年生活二三事
时间限制 1000 ms 内存限制 32768 KB 代码长度限制 100 KB 判断程序 Standard (来自 小小)
题目描述
NowCoder小时候走路喜欢蹦蹦跳跳,他最喜欢在楼梯上跳来跳去。
但年幼的他一次只能走上一阶或者一下子蹦上两阶。
现在一共有N阶台阶,请你计算一下NowCoder从第0阶到第N阶共有几种走法。

输入描述:
输入包括多组数据。每组数据包括一个整数n, (1≤n≤90)。

输出描述:
对应每个输入包括一个输出。
为redraiment到达第n阶不同走法的数量。

输入例子:
1
2

输出例子:
1
2

2 解析

设f(n)为青蛙从0到n台阶的方案数,
当f(1) = 1,f(2) = 2;
当n为3时,
在这里插入图片描述
当n为4时,
在这里插入图片描述
于是发现递推式为f(n) = f(n-1)+f(n-2)。也就是斐波那契数列。

  • 用递归(深度搜索)的化,会超时。所以考虑用动态规划,找出递推式,打表,然后查询。
  • 由于递推式最后的值会超过int,采用longlong存储。

3 参考代码

/*
 * 详解:https://blog.csdn.net/qq_33375598/article/details/104608324
 */
#include <cstdio>

typedef long long ll;
const int MAXN = 91;
ll f[MAXN] = {1,1,2};

int main(int argc, char const *argv[]){
    int n;
    for (int i = 3; i <= 90; ++i) {
        f[i] = f[i -1] + f[i -2];
    }
    while(scanf("%d", &n) != EOF){
        printf("%lld\n", f[n]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁星蓝雨

如果觉得文章不错,可以请喝咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值