算法 图8 How Long Does It Take

本文介绍了一种通过拓扑排序算法来确定项目最早完成时间的方法。利用邻接表存储项目活动及其持续时间,通过拓扑排序计算每个活动的最早开始时间,进而得出整个项目的最早完成时间。文章详细解释了算法实现过程,并提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全部每周作业和视频思考题答案和解析 见 浙江大学 数据结构 思考题+每周练习答案

题目:Given the relations of all the activities of a project, you are supposed to find the earliest completion time of the project.

Input Specification:

Each input file contains one test case. Each case starts with a line containing two positive integers N (≤100), the number of activity check points (hence it is assumed that the check points are numbered from 0 to N−1), and M, the number of activities. Then M lines follow, each gives the description of an activity. For the i-th activity, three non-negative numbers are given: S[i]E[i], and L[i], where S[i] is the index of the starting check point, E[i] of the ending check point, and L[i] the lasting time of the activity. The numbers in a line are separated by a space.

每个输入文件包含一个测试用例。每种情况都以一行开始,该行包含两个正整数N(≤100)、活动检查点的数量(因此,假设检查点的编号范围为0到N-1)和M,即活动数量。接下来是M行,每行给出一个活动的描述。对于第i个活动,给出了三个非负数:S[i],E[i]和L[i],其中S[i]是开始检查点的索引,E[i]是结束检查点,L[i]是活动的持续时间。一行中的数字用空格隔开。

Output Specification:

For each test case, if the scheduling is possible, print in a line its earliest completion time; or simply output "Impossible".

Sample Input 1:

9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4

Sample Output 1:

18

Sample Input 2:

4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5

Sample Output 2:

Impossible

解答:

思路很简单,构成一个拓扑排序,把每层最多需要的时间记录,逐层记录。

这里需要注意,我们的拓扑结构是最简单的任务,不需要保证某些步骤同步进行,视频里说了一种复杂的情况,与该题无关,我之前就混淆了。

我们先整理一个使用邻接表存储的拓扑排序程序:

注意因为是有向图,所以插入边的操作需要去掉后半部分。题目给的顶点序号是0到N-1,所以不需要读入数据再减一(参考上个题,顶点序号1-N,所以需要进一步处理)。

#include <iostream>
#include <queue>
using namespace std;

#define MaxVertexNum 1000
typedef int Vertex;

// 邻接表存储 - Kruskal最小生成树算法 

//-------------------- 顶点并查集定义 --------------------
typedef Vertex ElementType; // 默认元素可以用非负整数表示 
typedef Vertex SetName;     // 默认用根结点的下标作为集合名称 
typedef ElementType SetType[MaxVertexNum]; // 假设集合元素下标从0开始 							    
typedef int WeightType;       // 边的权值设为整型 
typedef char DataType;        // 顶点存储的数据类型设为字符型 

queue<Vertex> myQueue;

// 边的定义
typedef struct ENode *PtrToENode;
struct ENode {
	Vertex V1, V2;      // 有向边<V1, V2> 
	WeightType Weight;  // 权重 
};
typedef PtrToENode Edge;
//邻接点的定义 
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode {
	Vertex AdjV;        // 邻接点下标 
	WeightType Weight;  // 边权重 
	PtrToAdjVNode Next;    // 指向下一个邻接点的指针 
};
//顶点表头结点的定义
typedef struct Vnode {
	PtrToAdjVNode FirstEdge;	// 边表头指针 
	DataType Data;				// 存顶点的数据 
								// 注意:很多情况下,顶点无数据,此时Data可以不用出现 
} AdjList[MaxVertexNum];		// AdjList是邻接表类型 
//图结点的定义 
typedef struct GNode *PtrToGNode;
struct GNode {
	int Nv;			// 顶点数 
	int Ne;			// 边数   
	AdjList G;		// 邻接表 
};
typedef PtrToGNode LGraph; // 以邻接表方式存储的图类型 

LGraph CreateGraph(int VertexNum)
{ //初始化一个有VertexNum个顶点但没有边的图 
	Vertex V;
	LGraph Graph;

	Graph = (LGraph)malloc(sizeof(struct GNode)); // 建立图 
	Graph->Nv = VertexNum;
	Graph->Ne = 0;
	//初始化邻接表头指针 
	//注意:这里默认顶点编号从0开始,到(Graph->Nv - 1) 
	for (V = 0; V<Graph->Nv; V++)
		Graph->G[V].FirstEdge = NULL;

	return Graph;
}

void InsertEdge(LGraph Graph, Edge E)
{
	PtrToAdjVNode NewNode;

	//插入边 <V1, V2> 
	//为V2建立新的邻接点 
	NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
	NewNode->AdjV = E->V2;
	NewNode->Weight = E->Weight;
	//将V2插入V1的表头 
	NewNode->Next = Graph->G[E->V1].FirstEdge;
	Graph->G[E->V1].FirstEdge = NewNode;

	//注意拓扑排序是用的有向图

	//若是无向图,还要插入边 <V2, V1> 
	//为V1建立新的邻接点 
	//NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
	//NewNode->AdjV = E->V1;
	//NewNode->Weight = E->Weight;
	//将V1插入V2的表头 
	//NewNode->Next = Graph->G[E->V2].FirstEdge;
	//Graph->G[E->V2].FirstEdge = NewNode;
}

LGraph BuildGraph()
{
	LGraph Graph;
	Edge E;
	Vertex V;
	int Nv, i;

	cin >> Nv;   //读入顶点个数 
	Graph = CreateGraph(Nv); //初始化有Nv个顶点但没有边的图 

	cin >> Graph->Ne;   //读入边数 
	if (Graph->Ne != 0) { //如果有边 
		E = (Edge)malloc(sizeof(struct ENode)); //建立边结点 
												//读入边,格式为"起点 终点 权重",插入邻接矩阵 
		for (i = 0; i<Graph->Ne; i++) {
			cin >> E->V1 >> E->V2 >> E->Weight;
			//E->V1--;
			//E->V2--;
			//注意:如果权重不是整型,Weight的读入格式要改 
			InsertEdge(Graph, E);
		}
	}

	//如果顶点有数据的话,读入数据 
	//for (V = 0; V<Graph->Nv; V++)
	//cin >> Graph->G[V].Data;

	return Graph;
}

//邻接表存储 - 拓扑排序算法 
bool TopSort(LGraph Graph, Vertex TopOrder[])
{ //对Graph进行拓扑排序,  TopOrder[]顺序存储排序后的顶点下标 
	int Indegree[MaxVertexNum], cnt;
	Vertex V;
	PtrToAdjVNode W;

	//初始化Indegree[] 
	for (V = 0; V<Graph->Nv; V++)
		Indegree[V] = 0;

	//遍历图,得到Indegree[] 
	for (V = 0; V<Graph->Nv; V++)
		for (W = Graph->G[V].FirstEdge; W; W = W->Next)
			Indegree[W->AdjV]++; //对有向边<V, W->AdjV>累计终点的入度 
	//将所有入度为0的顶点入列 
	for (V = 0; V < Graph->Nv; V++)
		if (Indegree[V] == 0)
			myQueue.push(V);
	//下面进入拓扑排序 
	cnt = 0;
	while (!myQueue.empty()) {
		V = myQueue.front(); //弹出一个入度为0的顶点 
		myQueue.pop();
		TopOrder[cnt++] = V; //将之存为结果序列的下一个元素 
							 //对V的每个邻接点W->AdjV 
		for (W = Graph->G[V].FirstEdge; W; W = W->Next)
			if (--Indegree[W->AdjV] == 0)//若删除V使得W->AdjV入度为0 
				myQueue.push(W->AdjV); //则该顶点入列 
	} //while结束

	if (cnt != Graph->Nv)
		return false; //说明图中有回路, 返回不成功标志 
	else
		return true;
}
int main(void) {

	LGraph myGraph = BuildGraph();
	Vertex TopOrder[MaxVertexNum];
	bool flag = TopSort(myGraph, TopOrder);

	if (true == flag) {
		for (int i = 0;i < myGraph->Nv;i++) {
			cout << TopOrder[i] << " ";
		}
		cout << endl;
	}
	else {
		cout << " 有回路 " << endl;
	}


	cout << endl;
	system("pause");
	return 0;
}

打印输出结果为:0 3 2 1 5 4 7 6 8

说明我们的拓扑排序程序是正确的。

然后我们只需要在每个点到其连接点的判断中加入一句话:

			if ((Earliest[V] + W->Weight)>Earliest[W->AdjV]) {
				Earliest[W->AdjV] = Earliest[V] + W->Weight;
			}

也就是说找到每一组到后面最大的数。

然后最后别忘了要找到Earliest数组里面最大的数,因为最大的数才是总项目最短完成时间。

全部代码如下:

#include <iostream>
#include <queue>
using namespace std;

#define MaxVertexNum 1000
typedef int Vertex;

// 邻接表存储 - Kruskal最小生成树算法 

//-------------------- 顶点并查集定义 --------------------
typedef Vertex ElementType; // 默认元素可以用非负整数表示 
typedef Vertex SetName;     // 默认用根结点的下标作为集合名称 
typedef ElementType SetType[MaxVertexNum]; // 假设集合元素下标从0开始 							    
typedef int WeightType;       // 边的权值设为整型 
typedef char DataType;        // 顶点存储的数据类型设为字符型 
Vertex Earliest[MaxVertexNum];
queue<Vertex> myQueue;

// 边的定义
typedef struct ENode *PtrToENode;
struct ENode {
	Vertex V1, V2;      // 有向边<V1, V2> 
	WeightType Weight;  // 权重 
};
typedef PtrToENode Edge;
//邻接点的定义 
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode {
	Vertex AdjV;        // 邻接点下标 
	WeightType Weight;  // 边权重 
	PtrToAdjVNode Next;    // 指向下一个邻接点的指针 
};
//顶点表头结点的定义
typedef struct Vnode {
	PtrToAdjVNode FirstEdge;	// 边表头指针 
	DataType Data;				// 存顶点的数据 
								// 注意:很多情况下,顶点无数据,此时Data可以不用出现 
} AdjList[MaxVertexNum];		// AdjList是邻接表类型 
//图结点的定义 
typedef struct GNode *PtrToGNode;
struct GNode {
	int Nv;			// 顶点数 
	int Ne;			// 边数   
	AdjList G;		// 邻接表 
};
typedef PtrToGNode LGraph; // 以邻接表方式存储的图类型 

LGraph CreateGraph(int VertexNum)
{ //初始化一个有VertexNum个顶点但没有边的图 
	Vertex V;
	LGraph Graph;

	Graph = (LGraph)malloc(sizeof(struct GNode)); // 建立图 
	Graph->Nv = VertexNum;
	Graph->Ne = 0;
	//初始化邻接表头指针 
	//注意:这里默认顶点编号从0开始,到(Graph->Nv - 1) 
	for (V = 0; V<Graph->Nv; V++)
		Graph->G[V].FirstEdge = NULL;

	return Graph;
}

void InsertEdge(LGraph Graph, Edge E)
{
	PtrToAdjVNode NewNode;

	//插入边 <V1, V2> 
	//为V2建立新的邻接点 
	NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
	NewNode->AdjV = E->V2;
	NewNode->Weight = E->Weight;
	//将V2插入V1的表头 
	NewNode->Next = Graph->G[E->V1].FirstEdge;
	Graph->G[E->V1].FirstEdge = NewNode;

	//注意拓扑排序是用的有向图

	//若是无向图,还要插入边 <V2, V1> 
	//为V1建立新的邻接点 
	//NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
	//NewNode->AdjV = E->V1;
	//NewNode->Weight = E->Weight;
	//将V1插入V2的表头 
	//NewNode->Next = Graph->G[E->V2].FirstEdge;
	//Graph->G[E->V2].FirstEdge = NewNode;
}

LGraph BuildGraph()
{
	LGraph Graph;
	Edge E;
	Vertex V;
	int Nv, i;

	cin >> Nv;   //读入顶点个数 
	Graph = CreateGraph(Nv); //初始化有Nv个顶点但没有边的图 

	cin >> Graph->Ne;   //读入边数 
	if (Graph->Ne != 0) { //如果有边 
		E = (Edge)malloc(sizeof(struct ENode)); //建立边结点 
												//读入边,格式为"起点 终点 权重",插入邻接矩阵 
		for (i = 0; i<Graph->Ne; i++) {
			cin >> E->V1 >> E->V2 >> E->Weight;
			//E->V1--;
			//E->V2--;
			//注意:如果权重不是整型,Weight的读入格式要改 
			InsertEdge(Graph, E);
		}
	}

	//如果顶点有数据的话,读入数据 
	//for (V = 0; V<Graph->Nv; V++)
	//cin >> Graph->G[V].Data;

	return Graph;
}

//返回最大的元素
Vertex getMaxElement(Vertex arr[],int N) {
	Vertex maxElement = 0;
	for (int i = 0; i < N; i++)
		if (maxElement < arr[i])
			maxElement = arr[i];
	return maxElement;
}

//邻接表存储 - 拓扑排序算法 
bool TopSort(LGraph Graph, Vertex TopOrder[])
{ //对Graph进行拓扑排序,  TopOrder[]顺序存储排序后的顶点下标 
	int Indegree[MaxVertexNum], cnt;
	Vertex V;
	PtrToAdjVNode W;

	//初始化Indegree[] 
	for (V = 0; V<Graph->Nv; V++)
		Indegree[V] = 0;

	//遍历图,得到Indegree[] 
	for (V = 0; V<Graph->Nv; V++)
		for (W = Graph->G[V].FirstEdge; W; W = W->Next)
			Indegree[W->AdjV]++; //对有向边<V, W->AdjV>累计终点的入度 
	//将所有入度为0的顶点入列 
	for (V = 0; V < Graph->Nv; V++)
		if (Indegree[V] == 0)
			myQueue.push(V);
	//下面进入拓扑排序 
	cnt = 0;
	while (!myQueue.empty()) {
		V = myQueue.front(); //弹出一个入度为0的顶点 
		myQueue.pop();
		TopOrder[cnt++] = V; //将之存为结果序列的下一个元素 
							 //对V的每个邻接点W->AdjV 
		for (W = Graph->G[V].FirstEdge; W; W = W->Next) {
			if (--Indegree[W->AdjV] == 0)//若删除V使得W->AdjV入度为0 
				myQueue.push(W->AdjV); //则该顶点入列 
			if ((Earliest[V] + W->Weight)>Earliest[W->AdjV]) {
				Earliest[W->AdjV] = Earliest[V] + W->Weight;
			}
		}

	} //while结束

	if (cnt != Graph->Nv)
		return false; //说明图中有回路, 返回不成功标志 
	else
		return true;
}
int main(void) {

	LGraph myGraph = BuildGraph();
	Vertex TopOrder[MaxVertexNum];
	bool flag = TopSort(myGraph, TopOrder);
	Vertex showestTime = getMaxElement(Earliest, myGraph->Nv);
	if (true == flag) {
		cout << showestTime;
	}
	else {
		cout << "Impossible";
	}

	system("pause");
	return 0;
}

测试结果: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dezeming

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值