threading
模块是python
中专门提供用来做多线程编程的模块。threading
模块中最常用的类是Thread
。以下看一个简单的多线程程序:
import threading
import time
def coding():
for x in range(3):
print('%s正在写代码' % x)
time.sleep(1)
def drawing():
for x in range(3):
print('%s正在画图' % x)
time.sleep(1)
def single_thread():
coding()
drawing()
def multi_thread():
t1 = threading.Thread(target=coding)
t2 = threading.Thread(target=drawing)
t1.start()
t2.start()
if __name__ == '__main__':
multi_thread()
查看线程数:
使用threading.enumerate()
函数便可以看到当前线程的数量。
查看当前线程的名字:
使用threading.current_thread()
可以看到当前线程的信息。
继承自threading.Thread
类:
为了让线程代码更好的封装。可以使用threading
模块下的Thread
类,继承自这个类,然后实现run
方法,线程就会自动运行run
方法中的代码。示例代码如下:
import threading
import time
class CodingThread(threading.Thread):
def run(self):
for x in range(3):
print('%s正在写代码' % threading.current_thread())
time.sleep(1)
class DrawingThread(threading.Thread):
def run(self):
for x in range(3):
print('%s正在画图' % threading.current_thread())
time.sleep(1)
def multi_thread():
t1 = CodingThread()
t2 = DrawingThread()
t1.start()
t2.start()
if __name__ == '__main__':
multi_thread()
多线程共享全局变量的问题:
多线程都是在同一个进程中运行的。因此在进程中的全局变量所有线程都是可共享的。这就造成了一个问题,因为线程执行的顺序是无序的。有可能会造成数据错误。比如以下代码:
import threading
tickets = 0
def get_ticket():
global tickets
for x in range(1000000):
tickets += 1
print('tickets:%d'%tickets)
def main():
for x in range(2):
t = threading.Thread(target=get_ticket)
t.start()
if __name__ == '__main__':
main()
以上结果正常来讲应该是6,但是因为多线程运行的不确定性。因此最后的结果可能是随机的。
锁机制:
为了解决以上使用共享全局变量的问题。threading
提供了一个Lock
类,这个类可以在某个线程访问某个变量的时候加锁,其他线程此时就不能进来,直到当前线程处理完后,把锁释放了,其他线程才能进来处理。示例代码如下:
import threading
VALUE = 0
gLock = threading.Lock()
def add_value():
global VALUE
gLock.acquire()
for x in range(1000000):
VALUE += 1
gLock.release()
print('value:%d'%VALUE)
def main():
for x in range(2):
t = threading.Thread(target=add_value)
t.start()
if __name__ == '__main__':
main()
Lock版本生产者和消费者模式:
生产者和消费者模式是多线程开发中经常见到的一种模式。生产者的线程专门用来生产一些数据,然后存放到一个中间的变量中。消费者再从这个中间的变量中取出数据进行消费。但是因为要使用中间变量,中间变量经常是一些全局变量,因此需要使用锁来保证数据完整性。以下是使用threading.Lock
锁实现的“生产者与消费者模式”的一个例子:
import threading
import random
import time
gMoney = 1000
gLock = threading.Lock()
# 记录生产者生产的次数,达到10次就不再生产
gTimes = 0
class Producer(threading.Thread):
def run(self):
global gMoney
global gLock
global gTimes
while True:
money = random.randint(100, 1000)
gLock.acquire()
# 如果已经达到10次了,就不再生产了
if gTimes >= 10:
gLock.release()
break
gMoney += money
print('%s当前存入%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
gTimes += 1
time.sleep(0.5)
gLock.release()
class Consumer(threading.Thread):
def run(self):
global gMoney
global gLock
global gTimes
while True:
money = random.randint(100, 500)
gLock.acquire()
if gMoney > money:
gMoney -= money
print('%s当前取出%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
time.sleep(0.5)
else:
# 如果钱不够了,有可能是已经超过了次数,这时候就判断一下
if gTimes >= 10:
gLock.release()
break
print("%s当前想取%s元钱,剩余%s元钱,不足!" % (threading.current_thread(),money,gMoney))
gLock.release()
def main():
for x in range(5):
Consumer(name='消费者线程%d'%x).start()
for x in range(5):
Producer(name='生产者线程%d'%x).start()
if __name__ == '__main__':
main()
Condition版的生产者与消费者模式:
Lock
版本的生产者与消费者模式可以正常的运行。但是存在一个不足,在消费者中,总是通过while True
死循环并且上锁的方式去判断钱够不够。上锁是一个很耗费CPU资源的行为。因此这种方式不是最好的。还有一种更好的方式便是使用threading.Condition
来实现。threading.Condition
可以在没有数据的时候处于阻塞等待状态。一旦有合适的数据了,还可以使用notify
相关的函数来通知其他处于等待状态的线程。这样就可以不用做一些无用的上锁和解锁的操作。可以提高程序的性能。首先对threading.Condition
相关的函数做个介绍,threading.Condition
类似threading.Lock
,可以在修改全局数据的时候进行上锁,也可以在修改完毕后进行解锁。以下将一些常用的函数做个简单的介绍:
acquire
:上锁。release
:解锁。wait
:将当前线程处于等待状态,并且会释放锁。可以被其他线程使用notify
和notify_all
函数唤醒。被唤醒后会继续等待上锁,上锁后继续执行下面的代码。notify
:通知某个正在等待的线程,默认是第1个等待的线程。notify_all
:通知所有正在等待的线程。notify
和notify_all
不会释放锁。并且需要在release
之前调用。
Condition
版的生产者与消费者模式代码如下:
import threading
import random
import time
gMoney = 1000
gCondition = threading.Condition()
gTimes = 0
gTotalTimes = 5
class Producer(threading.Thread):
def run(self):
global gMoney
global gCondition
global gTimes
while True:
money = random.randint(100, 1000)
gCondition.acquire()
if gTimes >= gTotalTimes:
gCondition.release()
print('当前生产者总共生产了%s次'%gTimes)
break
gMoney += money
print('%s当前存入%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
gTimes += 1
time.sleep(0.5)
gCondition.notify_all()
gCondition.release()
class Consumer(threading.Thread):
def run(self):
global gMoney
global gCondition
while True:
money = random.randint(100, 500)
gCondition.acquire()
# 这里要给个while循环判断,因为等轮到这个线程的时候
# 条件有可能又不满足了
while gMoney < money:
if gTimes >= gTotalTimes:
gCondition.release()
return
print('%s准备取%s元钱,剩余%s元钱,不足!'%(threading.current_thread(),money,gMoney))
gCondition.wait()
gMoney -= money
print('%s当前取出%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
time.sleep(0.5)
gCondition.release()
def main():
for x in range(5):
Consumer(name='消费者线程%d'%x).start()
for x in range(2):
Producer(name='生产者线程%d'%x).start()
if __name__ == '__main__':
main()
Queue线程安全队列:
在线程中,访问一些全局变量,加锁是一个经常的过程。如果你是想把一些数据存储到某个队列中,那么Python内置了一个线程安全的模块叫做queue
模块。Python中的queue模块中提供了同步的、线程安全的队列类,包括FIFO(先进先出)队列Queue,LIFO(后入先出)队列LifoQueue。这些队列都实现了锁原语(可以理解为原子操作,即要么不做,要么都做完),能够在多线程中直接使用。可以使用队列来实现线程间的同步。相关的函数如下:
- 初始化Queue(maxsize):创建一个先进先出的队列。
- qsize():返回队列的大小。
- empty():判断队列是否为空。
- full():判断队列是否满了。
- get():从队列中取最后一个数据。
- put():将一个数据放到队列中。
使用生产者与消费者模式多线程下载表情包:
import threading
import requests
from lxml import etree
from urllib import request
import os
import re
from queue import Queue
class Producer(threading.Thread):
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36'
}
def __init__(self,page_queue,img_queue,*args,**kwargs):
super(Producer, self).__init__(*args,**kwargs)
self.page_queue = page_queue
self.img_queue = img_queue
def run(self):
while True:
if self.page_queue.empty():
break
url = self.page_queue.get()
self.parse_page(url)
def parse_page(self,url):
response = requests.get(url,headers=self.headers)
text = response.text
html = etree.HTML(text)
imgs = html.xpath("//div[@class='page-content text-center']//a//img")
for img in imgs:
if img.get('class') == 'gif':
continue
img_url = img.xpath(".//@data-original")[0]
suffix = os.path.splitext(img_url)[1]
alt = img.xpath(".//@alt")[0]
alt = re.sub(r'[,。??,/\\·]','',alt)
img_name = alt + suffix
self.img_queue.put((img_url,img_name))
class Consumer(threading.Thread):
def __init__(self,page_queue,img_queue,*args,**kwargs):
super(Consumer, self).__init__(*args,**kwargs)
self.page_queue = page_queue
self.img_queue = img_queue
def run(self):
while True:
if self.img_queue.empty():
if self.page_queue.empty():
return
img = self.img_queue.get(block=True)
url,filename = img
request.urlretrieve(url,'images/'+filename)
print(filename+' 下载完成!')
def main():
page_queue = Queue(100)
img_queue = Queue(500)
for x in range(1,101):
url = "http://www.doutula.com/photo/list/?page=%d" % x
page_queue.put(url)
for x in range(5):
t = Producer(page_queue,img_queue)
t.start()
for x in range(5):
t = Consumer(page_queue,img_queue)
t.start()
if __name__ == '__main__':
main()
创建线程
导入模块threading,通过threading.Thread()创建线程。其中target接收的是要执行的函数名字,args接收传入函数的参数,以元组()的形式表示。
1 import threading
2
3 def foo(n)
4 print("foo%s"%n)
5 t1 = threading.Thread(target=foo,args=(1,)) #创建线程对象
启动线程
通过线程对象t1.start()或t2.start()启动线程。
1 t1 = threading.Thread(target=sayhi, args=(1,)) # 生成一个线程实例
2 t2 = threading.Thread(target=sayhi, args=(2,)) # 生成另一个线程实例
3
4 t1.start() # 启动线程
5 t2.start() # 启动另一个线程
实例1:
1 import threading
2 import time
3
4 def foo(n):
5 print("foo%s"%n)
6 time.sleep(1)
7
8 def bar(n):
9 print("bar%s"%n)
10 time.sleep(2)
11
12 t1 = threading.Thread(target=foo,args=(1,))
13 t2 = threading.Thread(target=bar,args=(2,))
14
15 t1.start()
16 t2.start()
17
18 print("...in the main...")
结果:
程序启动后,主线程从上到下依次执行,t1、t2两个子线程启动后,与主线程并行,抢占CPU资源。因此,前三行的输出结果几乎同时打印,没有先后顺序,此时,需要等t1和t2都结束后程序才结束。故等待2s后,程序结束。程序总共花了2s。
foo1
bar2
...in the main...
Process finished with exit code 0
实例2:
1 import threading
2 from time import ctime,sleep
3 import time
4
5 def music(func):
6 for i in range(2):
7 print ("Begin listening to %s. %s" %(func,ctime()))
8 sleep(4)
9 print("end listening %s"%ctime())
10
11 def move(func):
12 for i in range(2):
13 print ("Begin watching at the %s! %s" %(func,ctime()))
14 sleep(5)
15 print('end watching %s'%ctime())
16
17 threads = []
18 t1 = threading.Thread(target=music,args=('七里香',))
19 threads.append(t1)
20 t2 = threading.Thread(target=move,args=('阿甘正传',))
21 threads.append(t2)
22
23 if __name__ == '__main__':
24
25 for t in threads:
26 t.start()
27
28 print ("all over %s" %ctime())
结果:
Begin listening to 七里香. Thu Sep 29 14:21:55 2016
Begin watching at the 阿甘正传! Thu Sep 29 14:21:55 2016
all over Thu Sep 29 14:21:55 2016
end listening Thu Sep 29 14:21:59 2016
Begin listening to 七里香. Thu Sep 29 14:21:59 2016
end watching Thu Sep 29 14:22:00 2016
Begin watching at the 阿甘正传! Thu Sep 29 14:22:00 2016
end listening Thu Sep 29 14:22:03 2016
end watching Thu Sep 29 14:22:05 2016
Process finished with exit code 0
join()
在子线程执行完成之前,这个子线程的父线程将一直被阻塞。就是说,当调用join()的子进程没有结束之前,主进程不会往下执行。对其它子进程没有影响。
实例1:
1 import threading
2 from time import ctime,sleep
3 import time
4
5 def music(func):
6 for i in range(2):
7 print ("Begin listening to %s. %s" %(func,ctime()))
8 sleep(4)
9 print("end listening %s"%ctime())
10
11 def move(func):
12 for i in range(2):
13 print ("Begin watching at the %s! %s" %(func,ctime()))
14 sleep(5)
15 print('end watching %s'%ctime())
16
17 threads = []
18 t1 = threading.Thread(target=music,args=('七里香',))
19 threads.append(t1)
20 t2 = threading.Thread(target=move,args=('阿甘正传',))
21 threads.append(t2)
22
23 if __name__ == '__main__':
24
25 for t in threads:
26 t.start()
27 t.join()
28
29 print ("all over %s" %ctime())
结果解析:
t1线程启动→Begin listening→4s后end listening + Begin listening →4s后t2线程启动end listening t1结束 + Begin watching→5s后end listening + Begin watching→5s后end listening t2结束+ all over最后主进程结束。 就是酱紫,有点乱。。。
Begin listening to 七里香. Thu Sep 29 15:00:09 2016
end listening Thu Sep 29 15:00:13 2016
Begin listening to 七里香. Thu Sep 29 15:00:13 2016
end listening Thu Sep 29 15:00:17 2016
Begin watching at the 阿甘正传! Thu Sep 29 15:00:17 2016
end watching Thu Sep 29 15:00:22 2016
Begin watching at the 阿甘正传! Thu Sep 29 15:00:22 2016
end watching Thu Sep 29 15:00:27 2016
all over Thu Sep 29 15:00:27 2016
实例2:
1 import threading
2 from time import ctime,sleep
3 import time
4
5 def music(func):
6 for i in range(2):
7 print ("Begin listening to %s. %s" %(func,ctime()))
8 sleep(4)
9 print("end listening %s"%ctime())
10
11 def move(func):
12 for i in range(2):
13 print ("Begin watching at the %s! %s" %(func,ctime()))
14 sleep(5)
15 print('end watching %s'%ctime())
16
17 threads = []
18 t1 = threading.Thread(target=music,args=('七里香',))
19 threads.append(t1)
20 t2 = threading.Thread(target=move,args=('阿甘正传',))
21 threads.append(t2)
22
23 if __name__ == '__main__':
24
25 for t in threads:
26 t.start()
27 t.join() #for循环的最后一次t的值,相当于t2
28
29 print ("all over %s" %ctime())
结果:
Begin listening to 七里香. Thu Sep 29 15:16:41 2016 #t1和t2线程启动
Begin watching at the 阿甘正传! Thu Sep 29 15:16:41 2016
end listening Thu Sep 29 15:16:45 2016
Begin listening to 七里香. Thu Sep 29 15:16:45 2016
end watching Thu Sep 29 15:16:46 2016
Begin watching at the 阿甘正传! Thu Sep 29 15:16:46 2016
end listening Thu Sep 29 15:16:49 2016 #t1结束
end watching Thu Sep 29 15:16:51 2016 #t2结束,t2结束之前,主线程一直被阻塞。t2结束主线程继续执行
all over Thu Sep 29 15:16:51 2016 #主线程结束
实例3:
1 import threading
2 from time import ctime,sleep
3 import time
4
5 def music(func):
6 for i in range(2):
7 print ("Begin listening to %s. %s" %(func,ctime()))
8 sleep(4)
9 print("end listening %s"%ctime())
10
11 def move(func):
12 for i in range(2):
13 print ("Begin watching at the %s! %s" %(func,ctime()))
14 sleep(5)
15 print('end watching %s'%ctime())
16
17 threads = []
18 t1 = threading.Thread(target=music,args=('七里香',))
19 threads.append(t1)
20 t2 = threading.Thread(target=move,args=('阿甘正传',))
21 threads.append(t2)
22
23 if __name__ == '__main__':
24
25 for t in threads:
26 t.start()
27 t1.join() #当t1调用join()时
28
29 print ("all over %s" %ctime())
结果:
1 Begin listening to 七里香. Thu Sep 29 15:35:35 2016 #t1和t2启动
2 Begin watching at the 阿甘正传! Thu Sep 29 15:35:35 2016
3 end listening Thu Sep 29 15:35:39 2016
4 Begin listening to 七里香. Thu Sep 29 15:35:39 2016
5 end watching Thu Sep 29 15:35:40 2016
6 Begin watching at the 阿甘正传! Thu Sep 29 15:35:40 2016
7 end listening Thu Sep 29 15:35:43 2016 #t1结束,主线程继续往下执行
8 all over Thu Sep 29 15:35:43 2016 #主线程结束
9 end watching Thu Sep 29 15:35:45 2016 #t2结束
setDaemon(True)
将线程声明为守护线程,必须在start() 方法调用之前设置, 如果不设置为守护线程程序会被无限挂起。这个方法基本和join是相反的。当我们 在程序运行中,执行一个主线程,如果主线程又创建一个子线程,主线程和子线程 就兵分两路,分别运行,那么当主线程完成想退出时,会检验子线程是否完成。如 果子线程未完成,则主线程会等待子线程完成后再退出。但是有时候我们需要的是 只要主线程完成了,不管子线程是否完成,都要和主线程一起退出,这时就可以用setDaemon方法。
实例:
1 import threading
2 from time import ctime,sleep
3 import time
4
5 def music(func):
6 for i in range(2):
7 print ("Begin listening to %s. %s" %(func,ctime()))
8 sleep(4)
9 print("end listening %s"%ctime())
10
11 def move(func):
12 for i in range(2):
13 print ("Begin watching at the %s! %s" %(func,ctime()))
14 sleep(5)
15 print('end watching %s'%ctime())
16
17 threads = []
18 t1 = threading.Thread(target=music,args=('七里香',))
19 threads.append(t1)
20 t2 = threading.Thread(target=move,args=('阿甘正传',))
21 threads.append(t2)
22
23 if __name__ == '__main__':
24
25 for t in threads:
26 t.setDaemon(True)
27 t.start()
28
29
30 print ("all over %s" %ctime())
结果:
Begin listening to 七里香. Thu Sep 29 15:45:32 2016 #t1和t2启动,分别打印一次后sleep,主进程继续
Begin watching at the 阿甘正传! Thu Sep 29 15:45:32 2016
all over Thu Sep 29 15:45:32 2016 #主进程结束,程序结束
同步锁
1 import time
2 import threading
3
4 def addNum():
5 global num #在每个线程中都获取这个全局变量
6 # num-=1
7
8 temp=num
9 print('--get num:',num )
10 #time.sleep(0.1)
11 num =temp-1 #对此公共变量进行-1操作
12
13
14 num = 100 #设定一个共享变量
15 thread_list = []
16 for i in range(100):
17 t = threading.Thread(target=addNum)
18 t.start()
19 thread_list.append(t)
20
21 for t in thread_list: #等待所有线程执行完毕
22 t.join()
23
24 print('final num:', num )
用num -= 1则最终结果没问题,这是因为完成这个操作太快了,在线程切换时间内。用中间变量temp进行赋值时出现问题,这是因为100个线程,每一个都没有执行完就就行了切换,因此最终得到的不是0。
多个线程同时操作同一个共享资源,所以导致冲突,这种情况就需要用同步锁来解决。
1 import time
2 import threading
3
4 def addNum():
5 global num #在每个线程中都获取这个全局变量
6 # num-=1
7 lock.acquire() #加同步锁
8 temp=num
9 print('--get num:',num )
10 #time.sleep(0.1)
11 num =temp-1 #对此公共变量进行-1操作
12 lock.release() #解锁
13
14 num = 100 #设定一个共享变量
15 thread_list = []
16 lock=threading.Lock() #创建lock对象
17
18 for i in range(100):
19 t = threading.Thread(target=addNum)
20 t.start()
21 thread_list.append(t)
22
23 for t in thread_list: #等待所有线程执行完毕
24 t.join() #所有线程执行完后主程序才能结束
25
26 print('final num:', num )
线程死锁和递归锁
所谓死锁: 是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。 由于资源占用是互斥的,当某个进程提出申请资源后,使得有关进程在无外力协助下,永远分配不到必需的资源而无法继续运行,这就产生了一种特殊现象死锁。
实例:
1 import threading,time
2
3 class myThread(threading.Thread):
4 def doA(self):
5 lockA.acquire()
6 print(self.name,"gotlockA",time.ctime())
7 time.sleep(3)
8 lockB.acquire()
9 print(self.name,"gotlockB",time.ctime())
10 lockB.release()
11 lockA.release()
12
13 def doB(self):
14 lockB.acquire()
15 print(self.name,"gotlockB",time.ctime())
16 time.sleep(2)
17 lockA.acquire()
18 print(self.name,"gotlockA",time.ctime())
19 lockA.release()
20 lockB.release()
21 def run(self):
22 self.doA()
23 self.doB()
24 if __name__=="__main__":
25
26 lockA=threading.Lock()
27 lockB=threading.Lock()
28 threads=[]
29 for i in range(5):
30 threads.append(myThread())
31 for t in threads:
32 t.start()
33 for t in threads:
34 t.join()#等待线程结束,后面再讲。
死锁解决办法:
使用递归锁,创建Rlock对象,在需要加锁时使用
1 lockA=threading.Lock()
2 lockB=threading.Lock()
lock = threading.Rlock()
Lock版本生产者和消费者模式:
生产者和消费者模式是多线程开发中经常见到的一种模式。生产者的线程专门用来生产一些数据,然后存放到一个中间的变量中。消费者再从这个中间的变量中取出数据进行消费。但是因为要使用中间变量,中间变量经常是一些全局变量,因此需要使用锁来保证数据完整性。以下是使用threading.Lock
锁实现的“生产者与消费者模式”的一个例子:
import threading
import random
import time
gMoney = 1000
gLock = threading.Lock()
# 记录生产者生产的次数,达到10次就不再生产
gTimes = 0
class Producer(threading.Thread):
def run(self):
global gMoney
global gLock
global gTimes
while True:
money = random.randint(100, 1000)
gLock.acquire()
# 如果已经达到10次了,就不再生产了
if gTimes >= 10:
gLock.release()
break
gMoney += money
print('%s当前存入%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
gTimes += 1
time.sleep(0.5)
gLock.release()
class Consumer(threading.Thread):
def run(self):
global gMoney
global gLock
global gTimes
while True:
money = random.randint(100, 500)
gLock.acquire()
if gMoney > money:
gMoney -= money
print('%s当前取出%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
time.sleep(0.5)
else:
# 如果钱不够了,有可能是已经超过了次数,这时候就判断一下
if gTimes >= 10:
gLock.release()
break
print("%s当前想取%s元钱,剩余%s元钱,不足!" % (threading.current_thread(),money,gMoney))
gLock.release()
def main():
for x in range(5):
Consumer(name='消费者线程%d'%x).start()
for x in range(5):
Producer(name='生产者线程%d'%x).start()
if __name__ == '__main__':
main()
Condition版的生产者与消费者模式:
Lock
版本的生产者与消费者模式可以正常的运行。但是存在一个不足,在消费者中,总是通过while True
死循环并且上锁的方式去判断钱够不够。上锁是一个很耗费CPU资源的行为。因此这种方式不是最好的。还有一种更好的方式便是使用threading.Condition
来实现。threading.Condition
可以在没有数据的时候处于阻塞等待状态。一旦有合适的数据了,还可以使用notify
相关的函数来通知其他处于等待状态的线程。这样就可以不用做一些无用的上锁和解锁的操作。可以提高程序的性能。首先对threading.Condition
相关的函数做个介绍,threading.Condition
类似threading.Lock
,可以在修改全局数据的时候进行上锁,也可以在修改完毕后进行解锁。以下将一些常用的函数做个简单的介绍:
acquire
:上锁。release
:解锁。wait
:将当前线程处于等待状态,并且会释放锁。可以被其他线程使用notify
和notify_all
函数唤醒。被唤醒后会继续等待上锁,上锁后继续执行下面的代码。notify
:通知某个正在等待的线程,默认是第1个等待的线程。notify_all
:通知所有正在等待的线程。notify
和notify_all
不会释放锁。并且需要在release
之前调用。
Condition
版的生产者与消费者模式代码如下:
import threading
import random
import time
gMoney = 1000
gCondition = threading.Condition()
gTimes = 0
gTotalTimes = 5
class Producer(threading.Thread):
def run(self):
global gMoney
global gCondition
global gTimes
while True:
money = random.randint(100, 1000)
gCondition.acquire()
if gTimes >= gTotalTimes:
gCondition.release()
print('当前生产者总共生产了%s次'%gTimes)
break
gMoney += money
print('%s当前存入%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
gTimes += 1
time.sleep(0.5)
gCondition.notify_all()
gCondition.release()
class Consumer(threading.Thread):
def run(self):
global gMoney
global gCondition
while True:
money = random.randint(100, 500)
gCondition.acquire()
# 这里要给个while循环判断,因为等轮到这个线程的时候
# 条件有可能又不满足了
while gMoney < money:
if gTimes >= gTotalTimes:
gCondition.release()
return
print('%s准备取%s元钱,剩余%s元钱,不足!'%(threading.current_thread(),money,gMoney))
gCondition.wait()
gMoney -= money
print('%s当前取出%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
time.sleep(0.5)
gCondition.release()
def main():
for x in range(5):
Consumer(name='消费者线程%d'%x).start()
for x in range(2):
Producer(name='生产者线程%d'%x).start()
if __name__ == '__main__':
main()