python图像处理(高斯滤波)

本文介绍了高斯滤波的基本原理,它是基于像素点权重的图像处理技术,权重随着距离增加而减小。对比了高斯滤波与均值滤波的区别,并通过示例展示了如何使用OpenCV API及自定义算法实现高斯滤波。最后,提供了完整的Python代码供读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

        在谈高斯滤波之前,我们不妨回顾一下之前谈到的均值滤波和中值滤波。均值滤波,就是对像素点以及周围的8个点计算平均值,然后赋值给新像素点。而中值滤波,则是对像素点及周围的8个点进行排序,选择最中间的那个点赋值给新像素点。那什么是高斯滤波呢?可以观察下均值滤波中,当时是对9个点进行平均操作,这样求解下来的就是平均值。试想一下,如果每一个像素点的权重不一样呢?

        高斯滤波正是根据这个道理提出来的。它的基本原理就是,越靠近当前像素点,权重越高,而越远离像素点,则权重越低。这样,权重不再是[1,1,1;1,1,1;1,1,1],而是[1,2,1;2,4,2;1,2,1],求得的像素之和也不再是除以9,而是变成了除以16,因为1+2+1+2+4+2+1+2+1=16。

        接下来,可以看下高斯滤波的效果如何,还是以lena作为范例进行介绍,

 

1、借助于opencv的api实现高斯滤波

        opencv本身也提供了高斯滤波的处理方法。使用起来比较简单,直接调

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式-老费

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值