嵌入式硬件从小工到专家(嵌入式AI及应用)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

目录

1、AI的主要应用领域

2、AI训练和部署

3、计算资源

4、npu的使用

5、npu的算力

6、模型从哪里来

7、npu的本质

8、目前哪些soc支持npu

9、有应用场景的ai更有意义


        目前人工智能越来越火,之前可能是图像和语音识别比较火,现在比较流行的是chatgpt和deepseek。特别是行业知识+deepseek的结合,这样的确可以帮助我们做很多的事情。这在之前是不可想象的事情。大多数时候,这些AI app都是可以当成一个工具来使用,或者是一个助手,可以处理很多问题,特别是一些基础问题。从小的方面来说,简单的模型+特定的soc npu也是有很大的市场,这部分也值得好好关注一下。

1、AI的主要应用领域

        AI的应用领域主要就是三部分,第一个部分是图像,第二个部分是语音,第三个部分是文字。当然第二部分、第三部分有的时候是加在一起处理的。比如说系统先识别出语音内容,然后理解语音,从而做出特定的动作。

2、AI训练和部署

        所谓的训练,其实就是模型训练的意思。这个模型可以看成是一个参数集合。模型可以很大,从小的几M,到大的几G、几十G都有可能。如果是几M、几十M的模型,自己用显卡训练一下问题不大,但是特别大的模型往往就需要原厂的帮助了。等模型训练好了,就可以部署这些模型了。部署的时候,可以在本地部署,也可以在云端部署。

        实际使用模型也是比较简单的。就拿图像为例,我们使用的时候,就是获取到图片之后,直接喂给模型即可。处理之后,模型就会把对应的信息反馈给我们,比如说roi的位置,识别目标的类型,对应结果的概率等等。

3、计算资源

        如果模型是本地部署,一般需要本地有好一点的计算资源。目前计算资源这部分就三块,一个是cpu、一个是gpu、一个是npu。cpu比较好理解,就是用cpu去加载模型计算数据,gpu就是显卡,目前主要就是nvidia公司在做。最后一个npu,是目前最通用的方式,也是大多数嵌入式soc使用的方式。通过对常见ai模型的翻译,就可以让这些模型部署到特定的soc上面运行起来。

4、npu的使用

        npu可以看成是一个特殊的ip。要把模型在这个ip上面运行起来,需要几个方面的帮助。首先是底层驱动,其次是上层动态库,最后是模型翻译工具。经过这三部分,一般模型就可以在嵌入式soc上面运行起来了。

5、npu的算力

        和cpu一样,npu的算力肯定是越高越好。从简单的0.5t、到现在汽车的700t,这种ip的差距很多。不过,算力越高的soc,价格肯定越贵。所以,和算力相比较,模型越实用,性价比越高,成本还是很重要的。本质上,模型和算力,都是为了应用而存在的。

6、模型从哪里来

        解决了模型运行和部署的问题,下面就是模型哪里来的问题。简单的模型,可以直接参考厂家提供的范例。复杂一点的模型,一般是借鉴论文,或者是经典开源模型来解决。而对于特定的行业应用,或者客户定制的模型,一般就是对开源模型进行魔改处理。比如说,利用现有的数据,重新对模型进行裁剪和训练,这样不需要从0到1去做,而且可以满足客户的需求。

7、npu的本质

        以图像处理为例,一般图像处理的模型,其基本构成就是卷积、池化和全连接。这部分用cpu当然可以去做,只不过cpu运算比较慢,没有办法达到实时处理的效果。这个时候,想到的办法,就是用硬件固化卷积、池化、全连接的逻辑,把模型放到ddr里面,通过优化访存设计和npu控制流设计,实现模型的加速处理。所以,我们才会发现,npu解决的并不是训练问题,也不是推理问题,它只解决了加速问题。

8、目前哪些soc支持npu

        现在国产的很多soc都支持npu,比如说某思、某微、某志、某智等等,国外的soc,这方面反而慢一点。很多同学用树莓派比较多,目前为止,树莓派上面还没有npu。大家想用ai的话,如果是国外的板子,基本只能用jetson,就是价格贵一点。

9、有应用场景的ai更有意义

        ai本质上还是为人服务的,这里面常用的市场就是人脸识别、车牌识别和ocr识别,这些都是从图像的角度来说。至于语音,或者是文字,大家也可以去找到对应的应用场景。不仅如此,能理解语音、理解文字,看懂周围的环境,并且对环境作为反应,这其实也是有意义的,也是最近人形机器人比较火的原因。

        不过个人还是建议从小的市场、更细分的市场入手,去查看ai还可能有什么用,这是比较务实的做法。毕竟对于小公司来说,资源总是有限的,只有细分市场才能让我们找到机会。哪怕是做玩具、做游戏、做宠物、或者是帮助客户解决小的问题,都是有意义的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式-老费

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值