从零开始完整学习机器学习和深度学习,包括理论和代码实现,主要用到scikit和MXNet,还有一些实践(kaggle上的)

本博客全面回顾了从零开始学习机器学习和深度学习的旅程,涵盖传统机器学习算法如kNN、线性回归、PCA,以及深度学习技术包括多层感知机、卷积神经网络和循环神经网络等。通过实践案例,如房价预测,深入浅出地讲解了模型训练和优化技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

作为对2020.6一个月学习机器学习和深度学习的回顾和汇总
从零开始完整学习传统机器学习和经典深度学习
只需要python基础,最好有线性代数基础,没有也问题不大

机器学习

机器学习系列(一) numpy的使用
机器学习系列(二) kNN(k近邻算法)会用到scikit
机器学习系列(三) 线性回归法,会用到scikit
机器学习系列(四) 梯度下降法
机器学习系列(五) PCA(主成分分析)会用到scikit
机器学习系列(六) 用scikit识别MNIST数据集,用到kNN和PCA
机器学习系列(七) 多项式回归和模型泛化(学习曲线、交叉验证、正则化)
机器学习系列(八) 逻辑回归和多分类问题
机器学习系列(九) 分类结果的评价(混淆矩阵、精确度、召回率、F1、ROC)
机器学习系列(十) 支持向量机SVM
机器学习系列(十一) 决策树
机器学习系列(十二) 集成学习

深度学习

深度学习系列(一) 多层感知机
深度学习系列(二) 卷积神经网络之基础知识
深度学习系列(三) 深度卷积神经网络(AlexNet、VGG、NiN、GoogleNet)
深度学习系列(四) 深度卷积神经网络之批量归一化、ResNet、DenseNet
深度学习系列(五)循环神经网络
深度学习系列(六) 循环神经网络之GRU、LSTM、双向循环
深度学习系列(七) 优化算法(梯度下降、动量法、AdaGrad算法、RMSProp算法、AdaDelta算法、Adam算法)
深度学习系列(八) 计算性能(命令式编程和符号式编程、异步计算、多GPU计算)
深度学习系列(九) 计算机视觉之模型泛化能力(图像增广和微调)
深度学习系列(十) 计算机视觉之目标检测(object detection)

实践

kaggle 房价预测 线性回归

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值