计算字符串的编辑距离(python)

本文介绍如何利用动态规划算法计算两个字符串之间的编辑距离,以'abcdefg'与'abcdef'为例,演示如何通过插入、删除和替换操作找到最短距离。适用于1到10000字符长度的字符串。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换
成另一个所需要的最少操作次数,许可的编辑操作包括将一个字符替换成另一个字符,
插入一个字符,删除一个字符,编辑距离的算法是首先由俄国科学家Levanshtein 提出的
故又叫Levenshtein Distance。
例如:
字符串A : abcdefg
字符串B : abcdef
通过增加或是删掉字符“g” 的方式达到目的,这两种方案都需要一次操作。把这个操作
所需要的次数定义为两个字符串的距离。
要求: 给定任意连个字符串,写出一个算法计算它们的编辑距离。
数据范围: 给定的字符串长度满足1<= len(str) <= 10000
输入描述:
每组用例一共2行,为输入的两个字符串
输出描述:
每组用例输出一行,代表字符串的距离
示例:
输入: abcdefg
abcdef
输出: 1

  • 这是一道动态规划的题,规律 就是
  • 1、某一点 处 string_a 和string_b 的位置相等,改点处的编辑距离是dp[row -1][col-1]
  • 2、如果不相等则等于相邻三个点的中最小的加+1
  • 填完表后,srring_a 到string_b 的编辑距离就是dp[n][m]
    填表如下图:
    在这里插入图片描述
    代码如下:
def edit_distance():
    """编辑距离"""
    string_a = input()
    string_b = input()
    m = len(string_a)
    n = len(string_b)
    dp = [[0 for _ in range(m + 1)] for _ in range(n + 1)]
    # 从空位置变到string_a每个位置的距离
    for col in range(m + 1):
        dp[0][col] = col
    # 从空位置变到string_b 每个位置的距离
    for row in range(n + 1):
        dp[row][0] = row

    # 填表
    for row in range(1, n+1):
        for col in range(1, m+1):
            if string_a[col-1] != string_b[row-1]:
                dp[row][col] = min(dp[row - 1][col], dp[row - 1][col-1], dp[row][col-1]) + 1
            else:
                dp[row][col] = dp[row-1][col-1]
    print(dp[n][m])

if __name__ == '__main__':
    edit_distance()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值