FlashInfer - SparseAttention(稀疏注意力)只计算部分有意义的注意力连接,而非全部 token 对

FlashInfer - SparseAttention(稀疏注意力)只计算部分有意义的注意力连接,而非全部 token 对

flyfish

SparseAttention 原理

SparseAttention(稀疏注意力)是针对标准自注意力机制的优化,核心目标是将 O(N²) 的计算复杂度降低到 O(N·k)(k 为稀疏度),特别适用于长序列(如 N>10k)。其核心思想是:只计算部分有意义的注意力连接,而非全部 token 对

在算法复杂度分析中,线性(Linear)亚线性(Sublinear) 是描述算法效率随输入规模增长的术语,与平方级(Quadratic)增长形成对比。

1. 核心定义

线性复杂度(O(N))
  • 定义:算法的计算量或内存开销与输入规模 NNN正比例关系
  • 特点:当 NNN 翻倍时,计算量/内存也翻倍。
  • 示例
    • 遍历数组求和:每个元素仅访问一次,总操作数为 NNN
    • 稀疏注意力的局部窗口模式(每个token仅关注前后 kkk 个token):总操作数为 N⋅kN \cdot kNk,当 kkk 固定时,复杂度为 O(N)O(N)O(N)
亚线性复杂度(O(N^α),其中 α < 1)
  • 定义:算法的计算量或内存开销增长慢于线性
  • 特点:当 NNN 翻倍时,计算量/内存增长小于两倍。
  • 常见形式
    • O(N)O(\sqrt{N})O(N):如分块算法。
    • O(Nlog⁡N)O(N \log N)O(NlogN):如快速排序、某些稀疏注意力的动态选择策略。

2. 与平方级复杂度(O(N²))的对比

复杂度含义增长速度(N增大时)适用场景
O(N²)平方级:计算量与 N2N^2N2 成正比极快(N翻倍时计算量×4)短序列(N<1000)
O(N)线性:计算量与 NNN 成正比中等(N翻倍时计算量×2)长序列(N>10000)
O(N^α)亚线性:α<1(如O(√N)、O(N logN))最慢(N翻倍时增长<2倍)超长序列(N>1M)或特殊场景

3. 稀疏注意力中的线性/亚线性优化

(1)局部窗口稀疏(Linear)
  • 模式:每个token仅关注前后 kkk 个token(如 k=512k=512k=512)。
  • 复杂度:总操作数 N⋅kN \cdot kNk,当 kkk 固定时为 O(N)O(N)O(N)
    计算量仅与序列长度 NNN 线性相关,而非 N2N^2N2
(2)动态Top-K选择(Sublinear)
  • 模式:每个token仅关注注意力得分最高的 KKK 个token(如 K=256K=256K=256)。
  • 复杂度:若使用高效选择算法(如堆排序),总操作数为 O(Nlog⁡K)≈O(Nlog⁡N)O(N \log K) \approx O(N \log N)O(NlogK)O(NlogN)(亚线性)。
    仅计算关键连接,避免冗余计算。

4. FlashInfer中的线性优化

FlashInfer通过以下方式实现线性或近似线性复杂度:

  1. 分页KV缓存(PageAttention)

    • 将KV缓存分成固定大小的页(如每页1024个token),仅激活当前相关的页。
    • 计算复杂度从 O(N2)O(N^2)O(N2) 降至 O(N⋅p)O(N \cdot p)O(Np)ppp 为活跃页数,通常 p≪Np \ll NpN)。
  2. 与稀疏注意力库集成

    • 结合 xformers 等库,支持局部窗口、扩张窗口等稀疏模式,直接将计算量降至 O(N)O(N)O(N)
  3. 内存访问优化

    • 通过连续内存布局和批量操作,减少每步计算的开销,进一步提升线性算法的效率。

5. 为什么线性/亚线性很重要?

在长序列场景(如 N=100KN=100KN=100K)中,平方级算法(如标准注意力)的计算和内存需求会爆炸式增长,而线性/亚线性算法仍能保持可扩展性:

序列长度 NNNO(N²) 计算量O(N) 计算量加速比
1,0001,000,0001,0001,000x
10,000100,000,00010,00010,000x
100,00010,000,000,000100,000100,000x

可见,当 NNN 增大时,线性算法的优势愈发明显。这也是 FlashInfer 等框架支持稀疏注意力的核心原因——突破平方级瓶颈,让模型处理超长文本成为可能

计算复杂度和内存开销呈平方级增长

在自注意力机制(Self-Attention)中,当序列长度 NNN 增大时,计算复杂度内存开销呈平方级增长(O(N2)O(N^2)O(N2)),根本原因在于 注意力矩阵的规模是 N×NN \times NN×N

一、自注意力的核心计算步骤

自注意力的计算分为三步(以单头注意力为例):

  1. 计算查询-键矩阵(QK矩阵)
    Score=QKT其中Q,K,V∈RN×d \text{Score} = QK^T \quad \text{其中} \quad Q, K, V \in \mathbb{R}^{N \times d} Score=QKT其中Q,K,VRN×d
    QQQ(查询)和 KKK(键)的形状均为 N×dN \times dN×dddd 是特征维度),它们的矩阵乘积得到 注意力分数矩阵 Score∈RN×N\text{Score} \in \mathbb{R}^{N \times N}ScoreRN×N

    • 计算复杂度:每个元素的计算需要 ddd 次乘法,总共有 N2N^2N2 个元素,复杂度为 O(N2d)O(N^2 d)O(N2d)
    • 内存开销:存储 Score\text{Score}Score 需要 N2N^2N2 个浮点数(如FP32时占 4N24N^24N2 字节)。
  2. Softmax归一化和值加权(QKV加权)
    Attention=Softmax(Score)⋅V \text{Attention} = \text{Softmax}(\text{Score}) \cdot V Attention=Softmax(Score)V

    • N×NN \times NN×N 的矩阵做Softmax,复杂度为 O(N2)O(N^2)O(N2)
    • 矩阵与 V∈RN×dV \in \mathbb{R}^{N \times d}VRN×d 相乘,得到 N×dN \times dN×d 的输出,复杂度为 O(N2d)O(N^2 d)O(N2d)
  3. 多头注意力扩展
    若有 hhh 个头,每个头独立计算,总复杂度变为 O(hN2d)O(hN^2 d)O(hN2d),但 hhhddd 通常是固定维度(如 h=16,d=64h=16, d=64h=16,d=64),因此主导项仍是 O(N2)O(N^2)O(N2)

二、平方级增长的本质原因

1. 计算复杂度的平方级来源
  • 核心操作是矩阵乘法 QKTQK^TQKT
    两个 N×dN \times dN×d 矩阵相乘得到 N×NN \times NN×N 矩阵,计算量为 N×d×N=N2dN \times d \times N = N^2 dN×d×N=N2d
    NNN 增大时,N2N^2N2 是主导项(即使 ddd 固定,如 d=1024d=1024d=1024N=4096N=4096N=4096N2=16,777,216N^2 = 16,777,216N2=16,777,216,远大于 NNN)。

  • 每对token都需计算一次关联
    自注意力要求每个token(共 NNN 个)与所有其他token(包括自身,共 NNN 个)计算注意力分数,总共有 N×N=N2N \times N = N^2N×N=N2 次两两交互。

2. 内存开销的平方级来源
  • 存储注意力分数矩阵(N×NN \times NN×N):
    假设使用FP32(4字节/数),存储该矩阵需要 4N24N^24N2 字节。

    • N=1024N=1024N=1024 时,需要约4MB;
    • N=16KN=16KN=16K 时,需要约1GB;
    • N=32KN=32KN=32K 时,需要约4GB(仅单个注意力头)。
      这还不包括中间变量(如Softmax结果、梯度等),实际内存占用会更高。
  • 隐含的内存放大效应
    矩阵运算(如PyTorch/TensorFlow的底层实现)需要额外的临时存储空间,进一步加剧内存压力。

三、举例说明

假设 d=1024d=1024d=1024(固定维度),比较不同 NNN 时的计算量和内存:

序列长度 NNN注意力矩阵大小计算量(乘加操作数)内存占用(FP32,单头)
10241024×1024~1e9次~4MB
20482048×2048~4e9次(×4)~16MB(×4)
40964096×4096~16e9次(×16)~64MB(×16)
16K16K×16K~262e9次(×256)~1GB(×256)
32K32K×32K~1e12次(×1024)~4GB(×1024)

可见,NNN 翻倍时,计算量和内存占用均变为原来的4倍(平方级增长)

四、为什么稀疏注意力能缓解这个问题?

稀疏注意力(如SparseAttention、FlashInfer支持的模式)通过 减少有效交互的token对数量(从 N2N^2N2 降至 O(N⋅r)O(N \cdot r)O(Nr)rrr 是每个token关注的平均token数),将复杂度优化为线性或亚线性(如 O(Nr)O(Nr)O(Nr)r≪Nr \ll NrN)。例如:

  • 局部窗口稀疏:每个token仅关注附近 r=512r=512r=512 个token,总交互数为 N⋅512=O(N)N \cdot 512 = O(N)N512=O(N)
  • Top-K稀疏:每个token仅关注得分最高的 K=256K=256K=256 个token,总交互数为 N⋅K=O(NK)N \cdot K = O(NK)NK=O(NK)

有意义的注意力连接

在注意力机制中,“有意义的注意力连接” 指的是 对当前任务或输入内容有实际影响的 token 对
“token 对”(Token Pair) 指的是 序列中任意两个 token 之间的交互关系。
“有意义的注意力连接”是一个与语义、句法、任务目标相关的概念,不同模型或场景可能采用不同的标准。在实际实现中,通常通过稀疏模式设计(如局部窗口、动态采样)或注意力得分过滤(如 Top-K、Top-P)来近似定义和计算这些有意义的连接,从而在保持模型性能的同时降低计算复杂度。

1. 基于语义关联的“有意义”

  • 定义:两个 token 在语义上存在强关联,关注它们的关系能帮助模型更好地理解上下文。
  • 示例
    • 输入句子:“济南是山东的省会,也是一座历史悠久的城市。”
    • 注意力机制应关注“济南”与“城市”之间的连接,因为它们在语义上高度相关。
    • 而“济南”与句首的“的”或句尾的句号之间的连接则可能被视为“无意义”。

2. 基于句法结构的“有意义”

  • 定义:两个 token 在句法上存在依赖关系(如主语-谓语、动词-宾语)。
  • 示例
    • 句子:“我喜欢苹果。”
    • “喜欢”与“苹果”之间的连接是有意义的,因为它们构成动宾关系。
    • 而“我”与“苹果”之间的直接连接可能较弱(需通过“喜欢”间接关联)。

3. 基于任务目标的“有意义”

  • 定义:根据具体任务,某些 token 对的关系对预测结果更重要。
  • 示例
    • 机器翻译:源语言与目标语言中对应的词对(如“apple”→“苹果”)。
    • 问答系统:问题中的关键词与上下文中的答案候选。
    • 命名实体识别:实体词与描述其属性的词(如“微软”与“公司”)。

4. 基于注意力得分的“有意义”

  • 定义:通过模型计算出的注意力得分(如 softmax 后的权重)筛选出重要连接。
  • 具体方法
    • Top-K 选择:保留得分最高的 K 个连接。
    • 阈值过滤:丢弃得分低于阈值的连接(如仅保留得分 > 0.1 的连接)。
    • 动态稀疏化:根据得分分布自适应确定稀疏度(如 Top-P 采样)。

5. 常见稀疏模式中的“有意义”设计

稀疏模式如何定义“有意义”
局部窗口认为当前 token 附近的 token 更相关(如前后 512 个 token)。
扩张窗口保留局部相关性的同时,通过跳跃式采样捕获长距离依赖(类似 CNN 中的空洞卷积)。
基于内容的稀疏使用额外的网络或启发式规则动态识别相关 token(如 Longformer 的 global attention)。
块稀疏将序列分块,块内全连接,块间仅保留关键连接(如 BigBird 的 block sparse)。

6. FlashInfer 中的“有意义”实现

FlashInfer 本身不直接定义“有意义”,而是通过以下方式支持用户自定义或第三方库定义的稀疏模式:

  1. 灵活的掩码接口:允许用户传入自定义掩码矩阵,显式指定哪些连接需要计算。
    # 示例:仅关注前 100 个 token
    mask = torch.zeros(seq_len, seq_len)
    mask[:, :100] = 1  # 每行仅关注前 100 列
    output = flashinfer.attention_with_mask(q, k, v, mask)
    
  2. 与第三方稀疏注意力库集成:如 xformerstorch-sparse,利用它们的算法识别有意义的连接。
  3. 长序列优化:通过分页 KV 缓存(PageAttention),仅激活当前可能相关的 token 页。

SparseAttention 原理

SparseAttention(稀疏注意力)是针对标准自注意力机制的优化,核心目标是将 O(N²) 的计算复杂度降低到 O(N·k)(k 为稀疏度),特别适用于长序列(如 N>10k)。其核心思想是:只计算部分有意义的注意力连接,而非全部 token 对

稀疏矩阵的定义与判定

1. 定义与核心特征

稀疏矩阵(Sparse Matrix)是指矩阵中绝大多数元素为零,仅有少量非零元素的矩阵。其核心特征是:

  • 零元素占比极高,非零元素占比极低。
  • 没有严格的数学阈值(如“必须超过X%的零元素”),但实际应用中,通常认为零元素占比超过 50% 即可视为稀疏矩阵,具体标准因领域而异(如数值计算、机器学习中可能要求更高的稀疏度,如70%以上)。
2. 分析

矩阵:

  • 非零元素:9个

  • 零元素:26个

  • 总元素:9 + 26 = 35个

  • 稀疏度(零元素占比):2635≈74.29%\frac{26}{35} \approx 74.29\%352674.29%

  • 密度(非零元素占比):935≈25.71%\frac{9}{35} \approx 25.71\%35925.71%

  • 属于稀疏矩阵。74%的零元素占比远超过“大部分”的基本要求(超过50%),符合稀疏矩阵的典型特征。

  • “绝大部分元素为零”中的“绝大部分”通常指超过一半(>50%),具体数值依场景而定。例如:

    • 若矩阵为 $5 \times 7 = 35 ) 维,26个零元素(占比74%)显然属于“绝大部分”;
    • 若矩阵规模更大(如 $100 \times 100 )),即使零元素占比60%,也可能被视为稀疏矩阵。
3. 关键补充
  • 无严格统一标准:稀疏矩阵的判定是相对的,取决于应用场景。例如:
    • 在科学计算中,零元素占比超过70%常被视为稀疏矩阵;
    • 在某些极端场景(如社交网络邻接矩阵),零元素占比可能高达99%以上。
  • 稀疏度与密度的计算
    • 稀疏度 = 零元素数量总元素数量×100%\frac{\text{零元素数量}}{\text{总元素数量}} \times 100\%总元素数量零元素数量×100%
    • 密度 = 1−稀疏度=非零元素数量总元素数量×100%1 - \text{稀疏度} = \frac{\text{非零元素数量}}{\text{总元素数量}} \times 100\%1稀疏度=总元素数量非零元素数量×100%

稀疏度需结合矩阵规模和领域需求综合判断

1. 标准注意力的瓶颈

标准自注意力计算 Attention(Q,K,V)=softmax(QKTd)V\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)VAttention(Q,K,V)=softmax(dQKT)V 需要计算所有 token 对之间的注意力得分,当序列长度 NNN 增大时,计算和内存开销呈平方级增长。

2. SparseAttention 的核心思路

通过设计稀疏模式(Sparsity Pattern),选择性地忽略部分 token 对之间的注意力计算:

  • 固定模式:如局部窗口(只关注当前 token 前后的 k 个 token)、扩张窗口(类似 CNN 中的空洞卷积)。
  • 动态模式:根据输入内容动态选择重要的 token 对(如基于注意力得分阈值)。
  • 结构化稀疏:利用矩阵分解或低秩近似减少计算量。
3. 数学表达

标准注意力的得分矩阵 S=QKTS = QK^TS=QKT 是稠密的,而稀疏注意力只计算其中非零元素:
Si,j={qiTkjif (i,j)∈稀疏模式0otherwise S_{i,j} = \begin{cases} q_i^T k_j & \text{if } (i,j) \in \text{稀疏模式} \\ 0 & \text{otherwise} \end{cases} Si,j={qiTkj0if (i,j)稀疏模式otherwise
其中,稀疏模式可通过掩码矩阵 MMM 表示:
Ssparse=S⊙M S_{\text{sparse}} = S \odot M Ssparse=SM
⊙\odot 表示逐元素乘法)。

4. 典型稀疏模式

模式描述复杂度
局部窗口每个 token 只关注前后固定窗口内的 token(如窗口大小=512)。O(N·k)
扩张窗口窗口内每隔一定步长采样 token,扩大感受野(类似 CNN 中的空洞卷积)。O(N·k/d)
随机稀疏随机选择固定比例的 token 对进行计算。O(N²·p)
基于内容的稀疏根据注意力得分动态选择 top-k 个连接(如 Longformer 的 global attention)。O(N·logN)

FlashInfer 对 SparseAttention 的实现

FlashInfer 并未直接实现完整的 SparseAttention 算法(如 Longformer 或 BigBird),而是通过以下方式支持稀疏模式

1. 与第三方库集成

FlashInfer 可与现有 SparseAttention 库(如 xformerstorch-sparse)结合使用,提供高效的稀疏矩阵计算内核:

import torch
import flashinfer
import xformers.ops as xops

# 使用 xformers 的稀疏注意力 + FlashInfer 的 KV 缓存
def sparse_attention_with_flashinfer(q, k_cache, v_cache, mask):
    # q: [batch, seq_len, heads, dim]
    # k_cache, v_cache: FlashInfer 的 KV 缓存
    
    # 从 FlashInfer 缓存中获取 K, V
    k, v = flashinfer.get_kv_from_cache(k_cache, v_cache, seq_lens)
    
    # 使用 xformers 的稀疏注意力计算
    attn_output = xops.memory_efficient_attention(
        q, k, v, 
        attn_bias=xops.LowerTriangularMask() if causal else None,
        p=0.0  # dropout
    )
    return attn_output
2. 优化稀疏矩阵计算

FlashInfer 通过以下方式加速稀疏注意力的计算:

  • GPU 内核优化:针对稀疏矩阵乘法(SpMM)生成专用 CUDA 内核,利用 GPU 并行计算能力。
  • 内存访问优化:将稀疏模式预编码为高效的数据结构(如 CSR/CSC 格式),减少内存碎片。
  • 与 FlashAttention 协同:对密集区域使用 FlashAttention 加速,稀疏区域使用优化的 SpMM。
3. 支持自定义稀疏模式

FlashInfer 允许用户通过 API 传入自定义掩码矩阵,灵活定义稀疏模式:

# 创建自定义稀疏掩码(示例:仅关注前 100 个 token)
sparse_mask = torch.zeros(seq_len, seq_len, dtype=torch.bool)
sparse_mask[:, :100] = True  # 每行仅关注前 100 列

# 使用 FlashInfer 执行带掩码的注意力
output = flashinfer.attention_with_mask(
    q=query,
    k=key,
    v=value,
    mask=sparse_mask
)
4. 长序列优化

对于超长序列(如 16K+ tokens),FlashInfer 结合 分页 KV 缓存(PageAttention) 和稀疏模式:

  • 将 KV 缓存按页存储,仅激活当前需要的页(类似内存分页机制)。
  • 对活跃页内的 token 应用密集注意力,页间使用稀疏连接,大幅减少计算量。

性能对比

方法计算复杂度内存占用适用场景
标准注意力O(N²)O(N²)短序列(N<2K)
FlashAttentionO(N²)O(N)中等序列(N<8K)
SparseAttention + FlashO(N·k)O(N·k)长序列(N>10K)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值