研究背景与意义
研究背景与意义
咖啡作为全球最受欢迎的饮品之一,其品质直接影响着消费者的选择和市场的竞争力。随着咖啡消费的不断增长,如何高效、准确地对咖啡豆进行品质分级成为了一个亟待解决的问题。传统的咖啡豆品质评估方法主要依赖于人工检验,虽然能够提供一定的准确性,但由于人工操作的主观性和效率低下,往往难以满足现代市场的需求。因此,基于计算机视觉的自动化品质分级系统应运而生,成为提升咖啡豆品质检测效率的重要手段。
在这一背景下,基于改进YOLOv11的咖啡豆品质分级图像分割系统的研究具有重要的现实意义。YOLO(You Only Look Once)系列模型因其高效的实时检测能力而广泛应用于各种视觉任务。通过对YOLOv11进行改进,结合咖啡豆的特征和品质分级需求,可以实现对咖啡豆图像的快速、准确的分割与分类。该系统不仅能够自动识别和分类咖啡豆的品质(如优质、中等质量和低质量),还能够通过数据集中的大量样本进行深度学习,提升模型的准确性和鲁棒性。
本研究所使用的数据集包含3639张经过精细标注的咖啡豆图像,涵盖了不同品质的咖啡豆样本。这些图像经过了多种预处理和增强技术,以提高模型的训练效果和泛化能力。通过构建这样一个系统,不仅可以提高咖啡豆品质检测的效率,还能为咖啡产业提供数据支持,帮助生产者和消费者更好地理解和选择咖啡产品。此外,该系统的成功实施还可能为其他农产品的品质检测提供借鉴,推动农业领域的智能化发展。因此,基于改进YOLOv11的咖啡豆品质分级图像分割系统的研究,不仅具有重要的学术价值,也具备广泛的应用前景。
图片演示
数据集信息展示
本项目数据集信息介绍
本项目旨在开发一个改进的YOLOv11模型,以实现咖啡豆品质的精准分级和图像分割。为此,我们构建了一个专门针对“Green Coffee Bean”的数据集,旨在提供高质量的训练样本,以提高模型的识别能力和分类准确性。该数据集包含三种主要类别,分别为“Good Quality”、“Low Quality”和“Medium Quality”,每个类别都代表了咖啡豆在不同生长和处理阶段的品质特征。
在数据集的构建过程中,我们特别注重样本的多样性和代表性。每个类别的样本均来自不同的咖啡种植区域和处理方式,确保模型能够学习到不同环境和处理条件下咖啡豆的品质差异。此外,数据集中包含了大量的图像,涵盖了咖啡豆的不同角度、光照条件和背景,以增强模型的鲁棒性。通过对图像进行精细的标注,我们为每个样本提供了详细的分割信息,使得模型能够在训练过程中有效地学习到每种品质的特征。
为了确保数据集的高质量,我们对每个类别的样本进行了严格的筛选和审核,确保只有符合标准的咖啡豆图像被纳入数据集中。这种精细化的处理不仅提高了数据集的整体质量,也为后续的模型训练提供了坚实的基础。最终,我们期望通过这一数据集的应用,能够显著提升YOLOv11在咖啡豆品质分级和图像分割任务中的表现,从而为咖啡产业的品质控制和市场流通提供更为精准的技术支持。
项目核心源码讲解(再也不用担心看不懂代码逻辑)
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import torch.nn.functional as F
class LayerNorm(nn.Module):
“”" 自定义的LayerNorm层,支持两种数据格式:channels_last(默认)和channels_first。
channels_last对应的输入形状为(batch_size, height, width, channels),
而channels_first对应的输入形状为(batch_size, channels, height, width)。
“”"
def init(self, normalized_shape, eps=1e-6, data_format=“channels_last”):
super().init()
# 权重和偏置初始化
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in [“channels_last”, “channels_first”]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
# 根据数据格式选择不同的归一化方式
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True) # 计算均值
s = (x - u).pow(2).mean(1, keepdim=True) # 计算方差
x = (x - u) / torch.sqrt(s + self.eps) # 标准化
x = self.weight[:, None, None] * x + self.bias[:, None, None] # 应用权重和偏置
return x
class Block(nn.Module):
“”" ConvNeXtV2的基本模块,包含深度可分离卷积、归一化、激活函数等。
Args:
dim (int): 输入通道数。
"""
def __init__(self, dim):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # 深度可分离卷积
self.norm = LayerNorm(dim, eps=1e-6) # 归一化层
self.pwconv1 = nn.Linear(dim, 4 * dim) # 1x1卷积(用线性层实现)
self.act = nn.GELU() # 激活函数
self.pwconv2 = nn.Linear(4 * dim, dim) # 1x1卷积(用线性层实现)
def forward(self, x):
input = x # 保存输入以便后续残差连接
x = self.dwconv(x) # 深度可分离卷积
x = self.norm(x) # 归一化
x = self.pwconv1(x) # 第一个1x1卷积
x = self.act(x) # 激活
x = self.pwconv2(x) # 第二个1x1卷积
x = input + x # 残差连接
return x
class ConvNeXtV2(nn.Module):
“”" ConvNeXt V2模型定义。
Args:
in_chans (int): 输入图像的通道数。默认值:3
num_classes (int): 分类头的类别数。默认值:1000
depths (tuple(int)): 每个阶段的块数。默认值:[3, 3, 9, 3]
dims (int): 每个阶段的特征维度。默认值:[96, 192, 384, 768]
"""
def __init__(self, in_chans=3, num_classes=1000,
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768]):
super().__init__()
self.downsample_layers = nn.ModuleList() # 下采样层列表
# 定义stem层
stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
)
self.downsample_layers.append(stem)
# 定义后续的下采样层
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
self.stages = nn.ModuleList() # 特征分辨率阶段,每个阶段包含多个残差块
for i in range(4):
stage = nn.Sequential(
*[Block(dim=dims[i]) for _ in range(depths[i])]
)
self.stages.append(stage)
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # 最后的归一化层
self.head = nn.Linear(dims[-1], num_classes) # 分类头
def forward(self, x):
for i in range(4):
x = self.downsample_layers[i](x) # 下采样
x = self.stages[i](x) # 通过当前阶段的块
return x # 返回最后的特征图
代码核心部分说明:
LayerNorm: 自定义的层归一化模块,支持不同的输入格式。
Block: ConvNeXtV2的基本构建块,包含深度可分离卷积、归一化和激活等操作。
ConvNeXtV2: 主模型类,定义了网络的结构,包括下采样层和多个特征提取阶段。
这个程序文件定义了一个名为 ConvNeXtV2 的深度学习模型,主要用于图像分类任务。该模型是基于卷积神经网络(CNN)的架构,结合了一些新的设计理念和技术,旨在提高性能和效率。
文件首先导入了必要的库,包括 PyTorch 和一些用于模型构建的工具。接着,定义了一些基础组件,包括 LayerNorm 和 GRN。LayerNorm 是一种层归一化的实现,支持两种数据格式(通道优先和通道后)。它的主要作用是对输入进行归一化处理,以提高模型的稳定性和收敛速度。GRN(全局响应归一化)层则通过计算输入的 L2 范数来进行归一化,增强了模型对特征的响应能力。
接下来,定义了 Block 类,这是 ConvNeXtV2 的基本构建块。每个块包含一个深度卷积层、归一化层、点卷积层和激活函数。块内还引入了随机深度(Drop Path)机制,以增强模型的泛化能力。ConvNeXtV2 类则是整个模型的核心,包含多个阶段,每个阶段由多个 Block 组成。模型的构造函数允许用户自定义输入通道数、分类数、每个阶段的块数和特征维度等参数。
在模型的前向传播过程中,输入图像经过多个下采样层和特征提取阶段,最终输出特征图。模型还包含一个线性层作为分类头,用于将提取的特征映射到类别标签。
此外,文件中还定义了一些函数,用于创建不同规模的 ConvNeXtV2 模型(如 atto、femto、pico 等),这些函数允许用户加载预训练权重,以便在特定任务上进行微调。
最后,update_weight 函数用于更新模型的权重,确保加载的权重与模型结构相匹配。整体而言,这个文件实现了一个灵活且高效的图像分类模型,适用于各种深度学习任务。
10.3 mobilenetv4.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
定义构建卷积层的函数
def conv_2d(inp, oup, kernel_size=3, stride=1, groups=1, bias=False, norm=True, act=True):
conv = nn.Sequential()
padding = (kernel_size - 1) // 2 # 计算填充
# 添加卷积层
conv.add_module(‘conv’, nn.Conv2d(inp, oup, kernel_size, stride, padding, bias=bias, groups=groups))
if norm:
# 添加批归一化层
conv.add_module(‘BatchNorm2d’, nn.BatchNorm2d(oup))
if act:
# 添加激活函数层
conv.add_module(‘Activation’, nn.ReLU6())
return conv
定义反向残差块
class InvertedResidual(nn.Module):
def init(self, inp, oup, stride, expand_ratio, act=False):
super(InvertedResidual, self).init()
self.stride = stride
assert stride in [1, 2] # 验证步幅只能是1或2
hidden_dim = int(round(inp * expand_ratio)) # 计算隐藏层维度
self.block = nn.Sequential()
if expand_ratio != 1:
# 如果扩展比不为1,添加1x1卷积层
self.block.add_module(‘exp_1x1’, conv_2d(inp, hidden_dim, kernel_size=1, stride=1))
# 添加深度可分离卷积层
self.block.add_module(‘conv_3x3’, conv_2d(hidden_dim, hidden_dim, kernel_size=3, stride=stride, groups=hidden_dim))
# 添加投影卷积层
self.block.add_module(‘red_1x1’, conv_2d(hidden_dim, oup, kernel_size=1, stride=1, act=act))
# 判断是否使用残差连接
self.use_res_connect = self.stride == 1 and inp == oup
def forward(self, x):
if self.use_res_connect:
# 如果使用残差连接,返回输入与卷积结果的和
return x + self.block(x)
else:
return self.block(x)
定义MobileNetV4模型
class MobileNetV4(nn.Module):
def init(self, model):
super().init()
self.model = model
# 构建模型的各个层
self.conv0 = build_blocks(self.spec[‘conv0’])
self.layer1 = build_blocks(self.spec[‘layer1’])
self.layer2 = build_blocks(self.spec[‘layer2’])
self.layer3 = build_blocks(self.spec[‘layer3’])
self.layer4 = build_blocks(self.spec[‘layer4’])
self.layer5 = build_blocks(self.spec[‘layer5’])
self.features = nn.ModuleList([self.conv0, self.layer1, self.layer2, self.layer3, self.layer4, self.layer5])
def forward(self, x):
features = [None, None, None, None]
for f in self.features:
x = f(x) # 逐层前向传播
# 根据输入大小记录特征图
if input_size // x.size(2) in scale:
features[scale.index(input_size // x.size(2))] = x
return features
创建不同版本的MobileNetV4模型
def MobileNetV4ConvSmall():
return MobileNetV4(‘MobileNetV4ConvSmall’)
def MobileNetV4ConvMedium():
return MobileNetV4(‘MobileNetV4ConvMedium’)
def MobileNetV4ConvLarge():
return MobileNetV4(‘MobileNetV4ConvLarge’)
def MobileNetV4HybridMedium():
return MobileNetV4(‘MobileNetV4HybridMedium’)
def MobileNetV4HybridLarge():
return MobileNetV4(‘MobileNetV4HybridLarge’)
if name == ‘main’:
model = MobileNetV4ConvSmall() # 实例化MobileNetV4ConvSmall模型
inputs = torch.randn((1, 3, 640, 640)) # 创建输入张量
res = model(inputs) # 前向传播
for i in res:
print(i.size()) # 打印输出特征图的尺寸
代码核心部分解释:
卷积层构建:conv_2d函数用于构建卷积层,包含卷积、批归一化和激活函数。
反向残差块:InvertedResidual类实现了反向残差块,包含扩展卷积、深度可分离卷积和投影卷积。
MobileNetV4模型:MobileNetV4类负责构建整个模型,包含多个层的组合,并实现前向传播。
模型实例化:通过不同的函数创建不同版本的MobileNetV4模型,并在主程序中进行测试。
这个程序文件定义了一个名为 mobilenetv4.py 的 Python 模块,主要实现了 MobileNetV4 网络架构的构建。MobileNetV4 是一种轻量级的卷积神经网络,适用于移动设备和嵌入式系统。文件中包含了多个类和函数,具体功能如下:
首先,程序导入了必要的库,包括 torch 和 torch.nn,并定义了一些可用的模型名称,包含 MobileNetV4ConvSmall、MobileNetV4ConvMedium、MobileNetV4ConvLarge、MobileNetV4HybridMedium 和 MobileNetV4HybridLarge。
接下来,程序定义了不同版本的 MobileNetV4 的结构规格,包括 MNV4ConvSmall_BLOCK_SPECS、MNV4ConvMedium_BLOCK_SPECS 和 MNV4ConvLarge_BLOCK_SPECS 等。这些规格以字典的形式存储了每一层的构建信息,包括卷积层的数量、参数和类型等。
make_divisible 函数用于确保所有层的通道数是可被8整除的,以满足模型的要求。这个函数接收一个值、一个除数和其他可选参数,返回调整后的整数值。
conv_2d 函数是一个辅助函数,用于创建一个包含卷积层、批归一化层和激活函数的序列模块。它接受输入通道数、输出通道数、卷积核大小、步幅等参数。
InvertedResidual 类实现了反向残差块,包含了扩展卷积、深度卷积和投影卷积的组合。它的 forward 方法根据条件决定是否使用残差连接。
UniversalInvertedBottleneckBlock 类是一个通用的反向瓶颈块,支持不同的卷积核大小和下采样选项。它的构造函数中定义了多个卷积层,并在 forward 方法中实现了前向传播。
build_blocks 函数根据层的规格构建相应的模块。它根据 block_name 的不同,调用不同的构建方法来创建卷积层或反向瓶颈块。
MobileNetV4 类是整个模型的主体,初始化时根据指定的模型名称构建网络结构。它将每一层的模块添加到 features 列表中,并在 forward 方法中实现了前向传播,返回特定尺度的特征图。
最后,程序定义了一些工厂函数,如 MobileNetV4ConvSmall、MobileNetV4ConvMedium 等,用于创建不同版本的 MobileNetV4 模型。在 main 块中,示例创建了一个 MobileNetV4ConvSmall 模型,并对随机输入进行了前向传播,打印出每一层输出的尺寸。
整体而言,这个文件实现了 MobileNetV4 的结构定义和前向传播逻辑,适合用于图像分类等任务。
源码文件
源码获取
可以直接加我下方的微信哦!