大模型及相关工具对科研工作与社会生活的影响:基于权威期刊的深度分析

2025年,从深度学习到大模型,人工智能技术已经走过了十余年的发展历程。这一演进过程不仅展现出惊人的速度与规模,更在技术深度和应用广度上实现了质的飞跃。然而,在喧嚣的舆论场之外,当我们回归科学研究的严谨视角,基于权威期刊的实证研究来审视大模型的真实发展水平时,我们不禁要问:这项技术究竟发展到了怎样的成熟度?它又将如何重塑我们的科研范式和社会图景?

大模型及相关工具对科研工作与社会生活的影响:基于权威期刊的深度分析

引言

大语言模型(Large Language Models, LLMs)作为人工智能领域的重大突破,近年来迅速崛起,引发了全球范围内的广泛关注。这些模型通过在海量数据上进行预训练,展现出强大的语言生成、理解与推理能力,不仅推动了技术革新,也对科研工作与社会生活产生了深远影响。本报告基于PubMed、Nature、Cell、Science等权威期刊的文献研究,系统分析大模型及相关工具对科研工作与社会生活的影响,探讨其在各领域的应用潜力、挑战与未来发展方向。

大模型的发展历程与技术特点

发展历程

大模型的发展可以追溯到语言建模研究的早期阶段。早期的语言模型主要基于n-gram统计方法,通过前面的词汇预测下一个词汇,但这种方法在理解复杂语言规则方面存在局限性[0]。随着深度学习的发展,词向量方法开始应用于NLP领域,为后续模型奠定了基础。2018年左右,Transformer架构的引入和BERT等预训练模型的出现,标志着深度学习在自然语言处理领域的突破[3]。
大模型时代的真正到来是以ChatGPT为代表的生成式大语言模型的出现。这些模型通过在大规模文本数据上进行预训练,然后针对特定任务进行微调,展现出超越传统模型的能力[0]。近年来,模型规模持续扩大,从百亿参数发展到千亿甚至万亿参数规模,训练数据量也从千亿词元(token)增加到万亿词元级别[1]。

技术特点

大语言模型具有以下几个显著特点:

  1. 规模巨大:通常拥有数十亿甚至数千亿参数,能够捕捉复杂的语言模式和知识[21]。
  2. 预训练-微调范式:首先在大规模无标签文本数据上进行预训练,学习通用语言表示,然后针对特定任务进行微调[3]。
  3. 多模态能力:不仅处理文本,还能够理解和生成图像、音频等多种形式的内容[7]。
  4. 强大的推理和规划能力:能够进行复杂推理、解决数学问题、理解抽象概念并进行创造性生成[10]。
  5. 少样本和零样本学习:无需大量标注数据,甚至无需任何特定任务的训练数据,就能完成新任务[3]。
    九天众擎语言大模型3.0等最新模型还采用了MoE(Mixture of Experts)架构,通过并行优化、混精计算优化等技术创新,解决了大模型训练中的算法精度溢出、非确定性计算误差等问题[1]。

相关工具与系统

与大模型配合使用的相关工具和系统也在快速发展。AutoGLM是全球首个能在手机上执行action的大模型交互智能体,由智谱GLM技术团队开发,整合了语言模型、多模态模型和工具使用等多领域技术成果[5]。它能通过理解屏幕信息,解析用户指令并执行任务,开创了全新的人机交互形式,使大模型首次突破Chatbot框架,具备与现实世界互动的能力。
BioChatter是另一个专注于生物医学应用的开源Python框架,基于开源科学原则构建,采用模块化架构,支持从快速原型开发到完整封装部署等多种应用[18]。它整合了基础开源组件,统一了生物医学中常见的LLM驱动工作流程,通过单一API提供服务;能与现有开源基础设施集成,注入领域知识进行检索增强生成;还允许用户通过系统提示和基于代理的系统定制平台。

大模型对科研工作的影响

化学研究领域的变革

大模型正在深刻改变化学研究范式,特别是在有机化学合成领域。上海交通大学的研究团队开发的化学大语言模型在《Nature Machine Intelligence》上发表的研究展示了大模型加速有机化学合成的巨大潜力[27]。
该研究首次实现化学大语言模型加速有机合成全流程,无需量子计算,仅依靠化学知识理解和推理能力,就在单步/多步逆合成、产率预测、选择性预测、反应优化等多个基准任务上超越了以往所有已知的最佳结果。研究建立了"Co-Chemist"人机协作的主动学习框架,在一项全新的、未曾报道的Suzuki-Miyaura交叉偶联反应中,仅用15次实验就成功找到了合适的配体和溶剂,实现了67%的分离产率,充分验证了其在加速真实化学发现中的巨大价值[27]。
大模型在化学研究中的应用不仅限于合成优化。《Nature Machine Intelligence》上发表的另一项研究介绍了框架LLM4SD,利用大语言模型将分子转换为特征向量,使用这些特征与解释性模型(如随机森林)结合,在各种基准数据集上超越了现有技术水平[28]。
此外,大模型还能直接指导自动化化学实验室。研究表明,大模型可以设计、执行和优化化学实验,大大提高了实验效率和成功率[31]。这种能力使得化学研究者能够将更多精力集中在创造性思考和理论突破上,而将繁琐的实验设计和优化工作交给AI完成。

医学研究与临床应用

大语言模型在医学领域的应用正在引发医疗研究和实践的变革。《Nature Medicine》上发表的综述文章全面讨论了大型语言模型在医学领域的应用,既引起了兴奋也引发了一些担忧[32]。
在医学问答方面,研究人员开发了涵盖医学检查、医学研究和消费者医疗问题的医学问答基准测试集MultiMedQA,评估了Pathways Language Model(PaLM)及其变体Flan-PaLM在医学问题回答任务上的表现。尽管Flan-PaLM在多项医学选择题数据集上达到了行业领先水平,但在理解和回答消费者医疗问题方面仍存在局限。为此,研究团队引入了指令提示调整技术,开发了Med-PaLM模型,该模型在人类评估框架下表现出了与临床医生相当的性能[12]。
在诊断推理方面,《Nature Medicine》上发表的另一项研究介绍了一个拥有1760亿参数的医疗大型语言模型,经过微调可以学习医生的推理诊断能力,实现了跨专科的诊断推理[33]。这一进展表明,大模型有望成为医生的有力助手,帮助他们更准确、更高效地进行诊断推理。
然而,医学大模型的应用也面临挑战。《Nature Medicine》上的一项研究发现,医学大语言模型容易受到数据投毒攻击。研究显示,只需替换训练语料库中0.001%的训练标记词与医疗错误信息,就会导致有害模型更可能传播医疗错误。更重要的是,被污染的模型在开源基准测试上与未被污染的对应模型表现相似,但却可能危及患者安全[16]。这一发现强调了确保大模型训练数据质量的重要性,以及开发能够抵抗数据投毒攻击的模型的必要性。
为规范大模型在医学研究中的应用,研究人员提出了TRIPOD-LLM报告指南,这是一个包含19个主要项目和50个子项目的清单,用于解决大语言模型在生物医学应用中的独特挑战[17]。这一指南的出现表明,学术界已经认识到规范大模型研究和应用的重要性。

科学发现与知识整合

大模型正在成为科学研究中的强大工具,不仅加速实验设计和数据分析,还能够促进跨学科知识整合和新发现。《Nature Machine Intelligence》上发表的研究表明,大语言模型可以直接用于科学发现,特别是在分子属性预测方面[28]。
这些模型通过海量数据的预训练,展现了强大的语言生成、理解与推理能力,不仅推动了技术的革新,也对科研工作产生了深远的影响。大语言模型作为一种深度学习算法,可以通过大规模数据集训练来学习识别、总结、翻译、预测和生成文本及其他内容[37]。
在科研效率方面,大模型可以显著提高科学家的工作效率。它们可以直接用于学术研究中的实质阶段,例如建立因果推断模型、建构社会调查数据、对数据进行编码分类等。此外,大模型还可用于辅助学者的学术生产,例如辅助学者写代码进行数据分析、从事多语翻译、修正文章格式、检索学术文本等[39]。
大模型还能够促进跨学科研究。通过理解不同学科的语言和概念,大模型可以帮助研究者发现跨学科的联系和模式,从而产生新的见解和发现。这种能力对于解决复杂的全球性问题,如气候变化、公共卫生等尤为重要。

研究范式的转变

大模型的出现正在引发科学研究范式的根本性转变。传统的科学研究往往依赖于假设驱动的方法,即先提出假设,再通过实验验证。而大模型的出现使得数据驱动的科学研究成为可能,研究者可以通过分析海量数据,发现新的模式和关联,从而产生新的假设和理论。
在有机化学合成领域,上海交通大学的研究团队首次实现化学大语言模型加速有机合成全流程,建立了"Co-Chemist"人机协作的主动学习框架,这展示了人机协作的新型研究范式[27]。在这种范式中,人类研究者负责提出创造性想法和进行关键决策,而AI负责执行计算、优化和验证等任务。
此外,大模型还能够加速科学发现的迭代过程。通过快速生成假设、设计实验和分析结果,大模型可以大大缩短从问题提出到解决方案的周期,从而加速科学进步。

大模型对社会生活的影响

医疗健康领域的应用

大语言模型在医疗健康领域的应用正在改变医疗服务的提供方式和患者体验。这些模型可以辅助医生进行诊断推理、制定治疗方案、管理患者健康记录等,从而提高医疗服务的效率和质量。
在医学问答方面,大模型可以为患者提供准确、个性化的健康信息,帮助他们更好地理解自己的健康状况和治疗选择。例如,Med-PaLM模型在理解和回答消费者医疗问题方面表现出了与临床医生相当的性能[12]。
在医疗决策支持方面,拥有1760亿参数的医疗大型语言模型可以学习医生的推理诊断能力,实现跨专科的诊断推理[33]。这可以帮助医生更准确地诊断疾病,减少误诊和漏诊的可能性。
然而,大模型在医疗健康领域的应用也面临挑战。医学大模型容易受到数据投毒攻击,只需替换训练语料库中极小部分的训练标记词(0.001%)与医疗错误信息,就会导致有害模型更可能传播医疗错误[16]。这一发现强调了确保大模型训练数据质量的重要性,以及开发能够抵抗数据投毒攻击的模型的必要性。
此外,大模型在医疗健康领域的应用还涉及到隐私保护、数据安全、责任归属等法律和伦理问题,需要社会各界共同探讨解决方案。

教育与学习方式的变革

大模型正在深刻改变教育与学习方式,为个性化学习、知识获取和教学创新提供了新的可能性。这些模型可以作为智能导师,根据学生的学习情况和需求,提供个性化的学习建议和指导。
在知识获取方面,大模型可以快速检索和整合大量信息,帮助学生和教师获取最新的知识和研究成果。这不仅提高了学习效率,还使教育内容更加丰富和多样化。
在教学创新方面,大模型可以辅助教师设计教学计划、开发教学材料、评估学生学习成果等,从而减轻教师的工作负担,使他们能够将更多精力集中在教学创新和学生互动上。
然而,大模型在教育领域的应用也面临挑战。如何确保模型输出内容的准确性和可靠性,如何保护学生隐私,如何防止学生过度依赖AI而缺乏批判性思维能力,都是需要认真考虑的问题。

社会治理与公共服务

大模型正在为社会治理与公共服务提供新的工具和方法,帮助政府和组织更高效、更公平地提供公共服务。这些模型可以分析海量数据,发现社会问题的模式和趋势,为政策制定提供科学依据。
在智能城市管理方面,大模型可以整合多种城市数据,如交通流量、空气质量、能源使用等,帮助城市管理者优化资源配置,提高城市运行效率。《Nature Human Behaviour》上发表的研究探讨了大语言模型如何重塑集体智能,特别是在智能城市、危机响应和全球健康等领域的应用[22]。
在危机响应方面,大模型可以帮助预测和应对自然灾害、公共卫生事件等危机情况,提高应急响应的速度和准确性。例如,在3.28缅甸特大地震救援事项中,北京语言大学研发的"中缅英互译系统"成功应用于国际救援,这是中国大语言模型技术首次应用于国际救援[38]。
然而,大模型在社会治理与公共服务中的应用也面临挑战。如何确保模型决策的透明性和公平性,如何保护个人隐私和数据安全,如何避免算法偏见和歧视,都是需要认真解决的问题。

经济与产业变革

大模型正在引发经济与产业的深刻变革,创造新的商业模式和就业机会,同时也对传统产业带来挑战。这些模型可以自动化许多工作流程,提高生产效率,降低成本,从而增强企业的竞争力。
在创意产业方面,大模型可以辅助设计、写作、音乐创作等创意工作,帮助艺术家和设计师产生新的创意和表达方式。大语言模型生成连贯文本并模仿多种写作风格的能力,引发了作家、文学理论家和研究人员的热烈讨论[37]。
在金融服务方面,招商银行首席信息官周天虹表示,从某种程度上而言,银行业是对金融数据和金融信息进行加工处理的信息处理行业,大语言模型将对银行业带来四方面影响[37]。这些影响包括提高客户服务效率、优化风险管理、增强欺诈检测能力等。
然而,大模型在经济与产业中的应用也面临挑战。如何平衡自动化与就业,如何应对职业转型,如何确保技术红利的公平分配,都是需要社会各界共同探讨的问题。

大模型的挑战与伦理问题

数据安全与隐私保护

大模型的数据安全与隐私保护问题是其应用中必须认真面对的挑战。这些模型在训练过程中需要大量数据,包括可能包含敏感信息的个人数据。如何确保这些数据的安全存储和使用,如何防止数据泄露和滥用,是大模型发展必须解决的问题。
医学大模型面临的威胁尤为严重。研究发现,医学大语言模型容易受到数据投毒攻击,只需替换训练语料库中极小部分的训练标记词(0.001%)与医疗错误信息,就会导致有害模型更可能传播医疗错误[16]。这一发现强调了确保大模型训练数据质量的重要性,以及开发能够抵抗数据投毒攻击的模型的必要性。
此外,大模型在使用过程中可能接触到用户的敏感信息,如何确保这些信息的安全处理和使用,也是需要认真考虑的问题。这涉及到数据加密、访问控制、数据匿名化等多种技术和管理措施的应用。

算法偏见与公平性

大模型的算法偏见与公平性问题是其应用中必须认真面对的挑战。这些模型在训练过程中可能继承和放大训练数据中的偏见,导致不公平的结果。如何识别和减少这些偏见,如何确保模型的公平性,是大模型发展必须解决的问题。
研究表明,欧美国家研发的大语言模型可能存在新自由主义偏见,输出的结果并不一定符合世界其他国家的世界观和价值观[39]。这一发现强调了开发符合不同文化和社会背景的本土化大模型的重要性。
此外,大模型在不同群体中的应用效果可能存在差异,如何确保所有群体都能平等地受益于大模型技术,也是需要认真考虑的问题。这涉及到数据多样性、模型公平性评估、用户反馈机制等多种技术和管理措施的应用。

伦理规范与监管框架

大模型的伦理规范与监管框架是其健康发展的制度保障。随着大模型能力的不断增强和应用范围的不断扩大,建立适当的伦理规范和监管框架变得越来越重要。
为规范大模型在医学研究中的应用,研究人员提出了TRIPOD-LLM报告指南,这是一个包含19个主要项目和50个子项目的清单,用于解决大语言模型在生物医学应用中的独特挑战[17]。这一指南的出现表明,学术界已经认识到规范大模型研究和应用的重要性。
在更广泛的领域,如何平衡技术创新与风险控制,如何确保大模型技术的发展符合社会价值观和伦理标准,如何建立有效的监管机制,都是需要社会各界共同探讨的问题。这涉及到伦理准则制定、监管框架设计、国际合作等多种制度和机制的建立和完善。

职业转型与社会影响

大模型的应用正在引发职业转型与社会影响,创造新的就业机会,同时也对传统产业带来挑战。如何帮助劳动者适应这些变化,如何确保技术红利的公平分配,是大模型发展必须考虑的问题。
大语言模型作为生产力工具可以用于学术研究,这一议题已经得到广泛讨论。大语言模型可以直接用于学术研究中的实质阶段,例如建立因果推断模型、建构社会调查数据、对数据进行编码分类等[39]。这种应用可能会改变学术研究的范式和方法,对研究人员的能力和工作方式提出新的要求。
此外,大模型在创意产业、金融服务等领域的应用也正在改变这些行业的工作方式和就业结构。如何帮助从业者适应这些变化,如何创造新的就业机会,如何确保技术红利的公平分配,都是需要社会各界共同探讨的问题。

未来发展趋势与展望

技术演进方向

大模型的技术演进方向主要包括以下几个方面:
模型效率提升:大语言模型(LLMs)的快速发展推动了多个领域的变革,重塑了通用人工智能的格局。然而,这些模型不断增长的计算和内存需求带来了巨大挑战,阻碍了学术研究和实际应用。为解决这些问题,人们开发了包括算法和硬件解决方案在内的多种方法来提高大语言模型的效率[23]。
专家混合模型:为了解决大模型参数规模庞大带来的训练和推理成本高的问题,专家混合模型(Mixture of Experts, MoE)成为一个重要研究方向。九天众擎语言大模型3.0采用了业界领先的MoE架构,通过并行优化、混精计算优化、权重去冗余优化等技术创新,解决了大模型算法精度溢出、非确定性计算误差等问题[1]。
混合模态发展:大模型正在从纯文本处理向多模态处理方向发展。AutoGLM整合了语言模型、多模态模型和工具使用等多领域技术成果,能通过理解屏幕信息,解析用户指令并执行任务,开创了全新的人机交互形式[5]。
专用领域优化:针对特定领域的专用大模型正在兴起。例如,针对化学研究的专用模型已经在有机化学合成优化方面取得了显著成果[27]。针对医学领域的专用模型也在不断发展,如Med-PaLM模型在理解和回答消费者医疗问题方面表现出了与临床医生相当的性能[12]。

应用场景拓展

大模型的应用场景正在不断拓展,未来可能会在以下几个方面取得突破:
科研创新:大模型将更深入地参与到科学研究的各个环节,从实验设计、数据收集、分析到结果解释,帮助科学家更高效地进行研究。在化学合成、材料科学、药物发现等领域,大模型已经显示出巨大的潜力[27][28]。
医疗健康:大模型将在医疗健康领域发挥更大作用,从辅助诊断、治疗方案制定到患者管理,提高医疗服务的效率和质量。拥有1760亿参数的医疗大型语言模型可以学习医生的推理诊断能力,实现跨专科的诊断推理[33]。
社会治理:大模型将在社会治理和公共服务方面发挥更大作用,从城市规划、交通管理到公共服务提供,提高社会治理的效率和公平性。大语言模型可以重塑集体智能,特别是在智能城市、危机响应和全球健康等领域的应用[22]。
创意产业:大模型将在创意产业中发挥更大作用,从内容创作、设计辅助到市场分析,为创意产业提供新的工具和方法。大语言模型生成连贯文本并模仿多种写作风格的能力,已经引发了作家、文学理论家和研究人员的热烈讨论[37]。

产业生态构建

大模型的产业生态正在逐步构建,未来可能会形成更加完善的生态系统:
开源生态发展:开源大模型正在成为重要的研究和应用平台。BioChatter是基于开源科学原则构建的开源Python框架,采用模块化架构,支持从快速原型开发到完整封装部署等多种应用[18]。
行业标准制定:针对大模型应用的行业标准正在制定。TRIPOD-LLM报告指南的出现表明,学术界已经认识到规范大模型研究和应用的重要性[17]。
国际合作加强:大模型的发展需要国际合作。DeepSeek是国产大语言模型,基于中国国情对模型进行进一步的调整,有助于使它更符合中国哲学社会科学学者的需求。通过自主研发,DeepSeek在这一点上可以更好地契合中国国情,帮助研究者从事具有中国特色的哲学社会科学研究[39]。
产业链完善:围绕大模型的产业链正在完善,从芯片设计、计算基础设施到应用开发,形成完整的产业生态。例如,AutoGLM整合了语言模型、多模态模型和工具使用等多领域技术成果[5]。

社会影响深远

大模型对社会的影响将越来越深远,未来可能会在以下几个方面产生重大影响:
工作方式变革:大模型将改变人们的工作方式,提高工作效率,创造新的工作模式。大模型可以直接用于学术研究中的实质阶段,例如建立因果推断模型、建构社会调查数据、对数据进行编码分类等;还可用于辅助学者的学术生产,例如辅助学者写代码进行数据分析、从事多语翻译、修正文章格式、检索学术文本等[39]。
教育方式变革:大模型将改变教育方式,促进个性化学习,提高教育质量。大模型可以作为智能导师,根据学生的学习情况和需求,提供个性化的学习建议和指导。
生活方式变革:大模型将改变人们的生活方式,提供更加智能和便捷的服务。AutoGLM支持用户实时就任何话题开启对话,多轮交流后智能引导发起任务,实时读取屏幕内容,结合所示信息展开问答,提供外文翻译、网络热词解释、信息问答等多种实用任务[5]。
社会结构变革:大模型将影响社会结构,创造新的社会形态,改变社会关系。大语言模型可以重塑集体智能,影响群体、组织、市场和社会的成功[22]。

结论

大模型及相关工具正在深刻改变科研工作与社会生活的方方面面。在科研领域,大模型正在改变研究范式,加速科学发现,促进跨学科合作;在社会生活领域,大模型正在改变医疗健康、教育、社会治理和经济产业的运行方式。
然而,大模型的应用也面临着数据安全与隐私保护、算法偏见与公平性、伦理规范与监管框架等多重挑战。应对这些挑战需要技术创新、制度建设和国际合作的共同努力。
未来,随着技术的不断演进和应用场景的不断拓展,大模型将发挥更加重要的作用,推动社会的数字化、智能化转型。在这个过程中,我们需要保持开放、包容的态度,同时也需要保持警惕,确保技术的发展符合人类的共同利益和价值观念。

参考文献

[0] 一文带你梳理Large Language Model发展历程 large language models简史-CSDN博客. https://blog.csdn.net/m0_59596990/article/details/146723516.
[1] 九天大模型大变身:性能狂飙35%!还能一键P大象. https://new.qq.com/rain/a/20250803A03VRE00.
[3] 什么是LLM(大语言模型)?_llm指令遵循-CSDN博客. https://blog.csdn.net/Alvin3411/article/details/134395065.
[5] AutoGLM - 您的专属智能AI助手. https://agent.aminer.cn/?utm_source=aihub.cn.
[10] 【AI100问(153)】大语言模型如何帮助化学家做实验?. https://new.qq.com/rain/a/20250730A09GVW00.
[12] [医疗大模型]Large language models encode clinical knowledge-CSDN博客. https://blog.csdn.net/li_li_rui/article/details/140486616.
[16] Medical large language models are vulnerable to data-poisoning attacks Nature Medicine. https://www.nature.com/articles/s41591-024-03445-1.
[17] The TRIPOD-LLM reporting guideline for studies using large language models Nature Medicine. https://www.nature.com/articles/s41591-024-03425-5.
[18] [医学大语言模型平台]原名:A platform for the biomedical application of large language models翻译:用于大语言模型生物医学应用的平台期刊:Nature … https://www.toutiao.com/w/1824182796776448/.
[21] 大语言模型(Large Language Model,LLM)简介-CSDN博客. https://blog.csdn.net/l8947943/article/details/136986061.
[22] How large language models can reshape collective intelligence Nature Human Behaviour. https://www.nature.com/articles/s41562-024-01959-9.
[23] 【文献阅读】The Efficiency Spectrum of Large Language Models: An Algorithmic Survey-CSDN博客. https://blog.csdn.net/Toky_min/article/details/146017300.
[27] Nature Machine Intelligence颠覆有机化学研究范式,上海交大发表化学合成大语言模型化学_新浪财经_新浪网. https://finance.sina.com.cn/wm/2025-08-08/doc-infkhfmv9054825.shtml.
[28] Large language models for scientific discovery in molecular property prediction Nature Machine Intelligence. https://www.nature.com/articles/s42256-025-00994-z.
[31] Large language models direct automated chemistry laboratory - 道客巴巴. https://www.doc88.com/p-73247989978592.html.
[32] 论文翻译:Large language models in medicine 医学中的大语言模型_中医大语言模型 论文-CSDN博客. https://blog.csdn.net/JieBao11/article/details/134463748.
[33] Medical large language model for diagnostic reasoning across specialties Nature Medicine. https://www.nature.com/articles/s41591-025-03520-1.
[37] 大语言模型的影响-今日头条. https://www.toutiao.com/topic/7492190555431798834/.
[38] 中国大语言模型技术首次应用于国际救援. https://www.sohu.com/a/921262070_313745.
[39] 大语言模型给中国哲学社会科学带来机遇和挑战-中国社会科学网. https://www.cssn.cn/skgz/bwyc/202504/t20250410_5867673.shtml.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tian Fengshou

写的很好,请给我钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值