Hi, I am using TAO OCR of nvcr.io/nvidia/tao/tao-toolkit:5.0.0-pyt
docker for training to recognize a line in documents.
Here is my config file: configs.txt (702 Bytes)
Char_list: char_list.txt (679 Bytes)
An example in my dataset:
178001.jpg Tôi không thể làm điều đó!
124430.jpg Tôi có một tấm thẻ điểm ghi trên mỗi căn nhà.
I have a problem with training process. Although I add the space character into char_list.txt
, I think the preprocessing process delete the space character when encoding character. How can I overcome this problem? I am looking forward to hearing from you :
Epoch 0: 0%| | 0/77026 [00:00<?, ?it/s]
' '
Error executing job with overrides: ['results_dir=/workspace/results_32x384']
An error occurred during Hydra's exception formatting:
AssertionError()
Traceback (most recent call last):
File "/usr/local/lib/python3.8/dist-packages/hydra/_internal/utils.py", line 254, in run_and_report
assert mdl is not None
AssertionError
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "</usr/local/lib/python3.8/dist-packages/nvidia_tao_pytorch/cv/ocrnet/scripts/train.py>", line 3, in <module>
File "<frozen cv.ocrnet.scripts.train>", line 136, in <module>
File "<frozen core.hydra.hydra_runner>", line 107, in wrapper
File "/usr/local/lib/python3.8/dist-packages/hydra/_internal/utils.py", line 389, in _run_hydra
_run_app(
File "/usr/local/lib/python3.8/dist-packages/hydra/_internal/utils.py", line 452, in _run_app
run_and_report(
File "/usr/local/lib/python3.8/dist-packages/hydra/_internal/utils.py", line 296, in run_and_report
raise ex
File "/usr/local/lib/python3.8/dist-packages/hydra/_internal/utils.py", line 213, in run_and_report
return func()
File "/usr/local/lib/python3.8/dist-packages/hydra/_internal/utils.py", line 453, in <lambda>
lambda: hydra.run(
File "/usr/local/lib/python3.8/dist-packages/hydra/_internal/hydra.py", line 132, in run
_ = ret.return_value
File "/usr/local/lib/python3.8/dist-packages/hydra/core/utils.py", line 260, in return_value
raise self._return_value
File "/usr/local/lib/python3.8/dist-packages/hydra/core/utils.py", line 186, in run_job
ret.return_value = task_function(task_cfg)
File "<frozen cv.ocrnet.scripts.train>", line 132, in main
File "<frozen cv.ocrnet.scripts.train>", line 121, in main
File "<frozen cv.ocrnet.scripts.train>", line 102, in run_experiment
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/trainer/trainer.py", line 603, in fit
call._call_and_handle_interrupt(
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/trainer/call.py", line 38, in _call_and_handle_interrupt
return trainer_fn(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/trainer/trainer.py", line 645, in _fit_impl
self._run(model, ckpt_path=self.ckpt_path)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/trainer/trainer.py", line 1098, in _run
results = self._run_stage()
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/trainer/trainer.py", line 1177, in _run_stage
self._run_train()
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/trainer/trainer.py", line 1200, in _run_train
self.fit_loop.run()
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/loop.py", line 199, in run
self.advance(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/fit_loop.py", line 267, in advance
self._outputs = self.epoch_loop.run(self._data_fetcher)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/loop.py", line 199, in run
self.advance(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 214, in advance
batch_output = self.batch_loop.run(kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/loop.py", line 199, in run
self.advance(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 88, in advance
outputs = self.optimizer_loop.run(optimizers, kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/loop.py", line 199, in run
self.advance(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 200, in advance
result = self._run_optimization(kwargs, self._optimizers[self.optim_progress.optimizer_position])
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 247, in _run_optimization
self._optimizer_step(optimizer, opt_idx, kwargs.get("batch_idx", 0), closure)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 357, in _optimizer_step
self.trainer._call_lightning_module_hook(
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/trainer/trainer.py", line 1342, in _call_lightning_module_hook
output = fn(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/core/module.py", line 1661, in optimizer_step
optimizer.step(closure=optimizer_closure)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/core/optimizer.py", line 169, in step
step_output = self._strategy.optimizer_step(self._optimizer, self._optimizer_idx, closure, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/strategies/strategy.py", line 234, in optimizer_step
return self.precision_plugin.optimizer_step(
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/plugins/precision/precision_plugin.py", line 121, in optimizer_step
return optimizer.step(closure=closure, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/optim/optimizer.py", line 198, in wrapper
out = func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/optim/optimizer.py", line 29, in _use_grad
ret = func(self, *args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/optim/adadelta.py", line 133, in step
loss = closure()
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/plugins/precision/precision_plugin.py", line 107, in _wrap_closure
closure_result = closure()
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 147, in __call__
self._result = self.closure(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 133, in closure
step_output = self._step_fn()
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 406, in _training_step
training_step_output = self.trainer._call_strategy_hook("training_step", *kwargs.values())
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/trainer/trainer.py", line 1480, in _call_strategy_hook
output = fn(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/pytorch_lightning/strategies/strategy.py", line 378, in training_step
return self.model.training_step(*args, **kwargs)
File "<frozen cv.ocrnet.model.pl_ocrnet>", line 162, in training_step
File "<frozen cv.ocrnet.utils.utils>", line 67, in encode
File "<frozen cv.ocrnet.utils.utils>", line 65, in <listcomp>
KeyError: ' '