你是否好奇,一段嘈杂的录音如何被分离出人声和背景音乐?一张模糊的照片如何通过算法变得清晰?这一切的背后,都离不开一个关键数学工具——离散傅里叶变换(DFT)。
今天,我们用最通俗的语言,带你揭开它的神秘面纱!
一、DFT是什么?为什么它如此重要?
DFT全称离散傅里叶变换,是数字信号处理的核心工具。
简单来说,它能把一段随时间变化的信号(比如音频波形)转换成不同频率成分的组合,就像把一杯混合果汁分解出苹果、橙子各自的比例。
公式定义:
对于长度为N的离散信号x[n],其DFT变换为:
其中:一般称为旋转因子。
x[n] 是时域信号,n是时域索引。X[k]是频域信号,k是频域索引。N是信号的长度。j是虚数单位。