【深度学习】多通道图像卷积过程及计算方式

本文探讨了深度学习中多通道图像卷积的原理和计算方式,解释了滤波器与输入通道的关系,指出滤波器数量决定了卷积后特征图的通道数。通过TensorFlow函数示例,阐述了卷积过程,并展示了如何实现这一过程的代码改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前,有写了一篇博文,【深度学习入门】——亲手实现图像卷积操作介绍卷积的相应知识,但那篇文章更多的是以滤波器的角度去讲解卷积。但实际上是神经网络中该博文内容并不适应。

之前的文章为了便于演示,针对的是二维卷积,比如一张图片有 RGB 三个颜色通道,我的方式是每个通道单独卷积,然后将各个通道合成一张图片,再可视化出来。但真实工程不会是这样的,很多东西需要进一步说明白。

熟悉 TensorFlow 的同学大概对这个函数比较熟悉。

tf.nn.conv2d(
    input,
    filter,
    strides,
    padding,
    use_cudnn_on_gpu=True,
    data_format='NHWC',
    dilations=[1, 1, 1, 1],
    name=None
)

其中 input 自然是卷积的输入,而 filter 自然就是滤波器。
它们的格式说明如下:

input:
[batch, in_height, in_width, in_channels]

filter
[filter_height, filter_width, in_channels, out_channels]

input 的 4 个参数很好理解,分别是批数量、高、宽、通道数。

但是,我当时在学习时有一个疑惑不能理解,那就是为什么 filter 有 2 个通道相关的参数呢?

按照网络上的建议,我大概知道 input 的 in_channels 和 filter 的 in_channels 要对应起来,而 out_channels 是卷积后生成的 featuremap 的通道数量,但是其中的计算细节,我并不知道。

为什么颜色通道为 3 的图像,经过卷积后,它的通道数量可以变成 128 或者其它呢?这是我的疑问。

后来,我发现自己有这个疑问是因为对卷积的概念理解不清楚。

我误以为,卷积过程中滤波器是 2 维的,只有宽高,通道数为 1.

这里写图片描述

实际上,真实的情况是,卷积过程中,输入层有多少个通道,滤波器就要有多少个通道,但是滤波器的数量是任意的,滤波器的数量决定了卷积后 featuremap 的通道数。

在这里插入图片描述

如果把输入当做一个立方体的话,那么 filter 也是一个立方体,它们卷积的结果也是一个立方体,并且上面中 input、filter、Result 的通道都是一致的。

但卷积过程的最后一步要包括生成 feature,很简单,将 Result 各个通道对应坐标的值相加就生成了 feature,相当于将多维的 Result 压缩成了 2 维的 feature。

可能有同学会问,为什么需要压缩 Result 到 2 维呢?

我们回顾,卷积的公式。

y ( n ) = ∑ i = − ∞ ∞ x ( i ) ∗ h ( n − i ) y(n) = \sum_{i=-\infty}^{\infty} x(i)*h(n-i) y(n)=

评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

frank909

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值