分享一个大牛的人工智能教程。零基础!通俗易懂!风趣幽默!希望你也加入到人工智能的队伍中来!请轻击人工智能教程大家好!欢迎来到我的网站! 人工智能被认为是一种拯救世界、终结世界的技术。毋庸置疑,人工智能时代就要来临了,科… 继续阅读 前言https://www.captainai.net/troubleshooter
什么是机器学习平台?
机器学习平台是面向数据科学团队的一站式数据分析平台,它是集数据准备、特征工程、算法实现、模型开发、模型发布、模型生产化管理于一体的综合平台,能够帮助企业快速构建数据分析应用。
典型工作流程设计
数据科学平台支持拖拽式、配置式数据挖掘工作流设计,使数据科学家能更加高效的完成从模型训练到模型生产应用的工作任务。一般而言,实现一个完整的工作流,包括如下几个重要步骤:
1、工作流定义
根据实际业务需求明确模型所支持的业务场景,根据业务场景需要,定义所需数据范围及数据量,以支持模型构建。
2、数据接入
可以接入各种格式、各种规模的多种数据源:文件、数据库、其他等等。
3、数据探查
快速理解数据,列表式查看数据,并配有多种可视化选型。
4、数据预处理
缺失值填充,规范化与标准化,数据类型转换等。
5、特征工程
特征选择,特征变换,特征分析,数据降维,特征权重分析等。
6、模型训练
针对业务目标和数据,选择合适的算法(分类算法、聚类算法、回归算法等)完成模型训练过程。
7、模型评估
提供多维度模型评估指标,图形化模型评估、对比,实现全面模型效果评估。
8、模型发布
在模型评估验证后,模型自动发布到生产集群中提供模型调用服务,同时在模型仓库中实现模型生命周期管理。
应用案例
背景
客户是银行赖以生存和发展的基础,但是目前业务的营销方式粗放、目标客户不清晰,无法取得较好的营销成果。
通过相关营销模型的建立,为某银行带来如下价值:通过营销预测名单,对产品进行“交叉营销”,推动产品转化率。通过预测名单,对客户进行分类管理和服务,将沉睡客户转化为活跃客户,活跃客户转化为忠实客户。根据模型输出数据结合客户存款结构,设计了多款高端具有延续性的理财产品,吸引了大量的新客户。
设计思路
通过“金融产品智能推荐”宽表设计,实现相关业务系统(客户画像系统/数据平台)的数据整合、接入,提取和数据分析宽表设计和实现。通过“金融产品智能推荐”分析建模,根据数据分析宽表完成对目标客户建模、训练及预测。通过“金融产品智能推荐”项目模型得出营销名单,作为预测结果的存储和提取。
分析流程
1、数据准备
从源系统中抽取数据并形成预测模型所需的分析宽表。
2、数据特征处理
对数据进行描述性统计分析,对连续数据进行归一化或离散化,对空值进行必要填充,对无效变量进行清理,对输入特征变量进行相关性分析。
3、分析建模及评估
对输入特征变量和预测标签变量进行特征变量检验,使用机器学习算法完成特征变量降维,使用投票算法对梯度提升、神经网络、贝叶斯机器学习算法进行训练和评估。
4、模型应用
根据评估后模型获取特征变量重要性,对输入数据进行整理形成预测输入变量并预测,获得预测名单。
整体服务
基础服务:
- 操作系统
- 业界成熟的开源容器引擎
- 容器编排系统,为容器应用提供自动化部署、可扩展、综合管理能力
- 镜像仓库
- 关系数据库管理系统,持大部分SQL标准并且提供了许多其他现代特性
- Key-Value存储系统,以高性能著称
- 消息队列管理系统
- 远程访问Spark的桥梁
- 分布式配置中心
- 一个基于Web的文档创作和程序开发软件,常用于数据加工、数据可视化、机器学习等
- Kubernetes环境下的微服务网关
- 自动监控报警系统
- 监控指标可视化展示工具
- 一款高性能的HTTP和反向代理服务器
- 也是一个分布式Key-Value存储及应用程序协调服务,Kubernetes运行是依赖此服务
自有服务:
- 前端应用服务,基于HTML+CSS
- 业务处理服务,负责数据库维护及后端请求转发
- 负责数据应用工作流的解析、调度、执行
- 维护算法定制和工作流的运行空间,为算法调试、测试、发布提供支撑
- 基于Docker进行资源调度和服务编排
- 提供Docker镜像发布功能,支持冷发布和热发布
- 提供多元数据的查询、统计和分析功能
- 对Livy的封装
- 模型仓库服务,提供模型仓库管理功能
- 模型分析服务,解析模型信息
- 模型发布功能,提供模型部署、上线功能
- 模型服务功能,对外暴露模型服务接口
- 为算法调试、测试和包管理提供后端支撑
- 算法运行环境维护
- 模型仓库SDK
- 日志审计服务,记录用户操作和工作流运行状态
- 用户组织及权限管理