【中等】龙与地下城游戏问题-Java:经典动态规划解法

博客分享了一个零基础、通俗易懂且风趣幽默的人工智能教程,呼吁大家加入人工智能队伍。同时提到人工智能被认为是能拯救或终结世界的技术,强调人工智能时代即将来临。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享一个大牛的人工智能教程。零基础!通俗易懂!风趣幽默!希望你也加入到人工智能的队伍中来!请轻击人工智能教程大家好!欢迎来到我的网站! 人工智能被认为是一种拯救世界、终结世界的技术。毋庸置疑,人工智能时代就要来临了,科… 继续阅读 前言https://www.captainai.net/troubleshooter

package live.every.day.ProgrammingDesign.CodingInterviewGuide.RecursionAndDynamicPrograming;

/**
 * 龙与地下城游戏问题
 *
 * 【题目】
 * 给定一个二维数组map,含义是一张地图,例如,如下矩阵:
 * -2 -3 3
 * -5 -10 1
 * 0 30 -5
 * 游戏的规则如下:
 * 骑士从左上角出发,每次只能向右或向下走,最后到达右下角见到公主。
 * 地图中每个位置的值代表骑士要遭遇的事情。如果是负数,说明此处有怪兽,要让骑士损失血量。如果是非负数,代表此处有血瓶,能
 * 让骑士回血。
 * 骑士从左上角到右下角的过程中,走到任何一个位置时,血量都不能少于1。
 * 为了保证骑士能见到公主,初始血量至少是多少?根据map,返回初始血量。
 *
 * 【难度】
 * 中等
 *
 * 【解答】
 * 先介绍经典动态规划的方法,定义和地图大小一样的矩阵,记为dp,dp[i][j]的含义是如果骑士要走上位置(i,j),并且从该位置选
 * 一条最优的路径,最后走到右下角,骑士起码应该具备的血量。根据dp的定义,我们最终需要的是dp[0][0]的结果。以题目的例子来
 * 说,map[2][2]的值为-5,所以骑士若要走上这个位置,需要6点血才能让自己不死。同时位置(2,2)己经是最右下角的位置,即没有
 * 后续的路径,所以dp[2][2]==6。
 * 那么dp[i][j]的值应该怎么计算呢?
 * 骑士还要面临向下还是向右的选择,dp[i][j+1]是骑士选择当前向右走并最终达到右下角的血量要求。同理,dp[i+1][j]是向下走
 * 的要求。如果骑士决定向右走,那么骑士在当前位置加完血或者扣完血之后的血量只要等于dp[i][j+1]即可。那么骑士在加血或扣血
 * 之前的血量要求(也就是在没有踏上(i,j)位置之前的血量要求),就是dp[i][j+1]-map[i][j]。同时,骑士血量要随时不少于1,
 * 所以向右的要求为max{dp[i][j+1]-map[i][j],1)。如果骑士决定向下走,分析方式相同,向下的要求为
 * max{dp[i+1][j]-map[i][j],1}。
 * 骑士可以有两种选择,当然要选最优的一条,所以dp[i][j]=min{向右的要求,向下的要求}。计算dp矩阵时从右下角开始计算,选择
 * 依次从右至左、再从下到上的计算方式即可。
 *
 * 具体请参看如下代码中的minHP1方法。
 *
 * @author Created by LiveEveryDay
 */
public class DungeonsAndDragons1 {

    public static int minHP1(int[][] m) {
        if (m == null || m.length == 0 || m[0] == null || m[0].length == 0) {
            return 1;
        }
        int row = m.length;
        int col = m[0].length;
        int[][] dp = new int[row--][col--];
        dp[row][col] = m[row][col] > 0 ? 1 : -m[row][col] + 1;
        for (int j = col - 1; j >= 0; j--) {
            dp[row][j] = Math.max(dp[row][j + 1] - m[row][j], 1);
        }
        int right = 0;
        int down = 0;
        for (int i = row - 1; i >= 0; i--) {
            dp[i][col] = Math.max(dp[i + 1][col] - m[i][col], 1);
            for (int j = col - 1; j >= 0; j--) {
                right = Math.max(dp[i][j + 1] - m[i][j], 1);
                down = Math.max(dp[i + 1][j] - m[i][j], 1);
                dp[i][j] = Math.min(right, down);
            }
        }
        return dp[0][0];
    }

    public static void main(String[] args) {
        int[][] m = {{-2, -3, 3}, {-5, -10, 1}, {0, 30, -5}};
        System.out.printf("The min HP is: %d", minHP1(m));
    }

}

// ------ Output ------
/*
The min HP is: 7
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值