分享一个大牛的人工智能教程。零基础!通俗易懂!风趣幽默!希望你也加入到人工智能的队伍中来!请轻击人工智能教程大家好!欢迎来到我的网站! 人工智能被认为是一种拯救世界、终结世界的技术。毋庸置疑,人工智能时代就要来临了,科… 继续阅读 前言https://www.captainai.net/troubleshooter
package live.every.day.ProgrammingDesign.CodingInterviewGuide.RecursionAndDynamicPrograming;
/**
* 龙与地下城游戏问题
*
* 【题目】
* 给定一个二维数组map,含义是一张地图,例如,如下矩阵:
* -2 -3 3
* -5 -10 1
* 0 30 -5
* 游戏的规则如下:
* 骑士从左上角出发,每次只能向右或向下走,最后到达右下角见到公主。
* 地图中每个位置的值代表骑士要遭遇的事情。如果是负数,说明此处有怪兽,要让骑士损失血量。如果是非负数,代表此处有血瓶,能
* 让骑士回血。
* 骑士从左上角到右下角的过程中,走到任何一个位置时,血量都不能少于1。
* 为了保证骑士能见到公主,初始血量至少是多少?根据map,返回初始血量。
*
* 【难度】
* 中等
*
* 【解答】
* 先介绍经典动态规划的方法,定义和地图大小一样的矩阵,记为dp,dp[i][j]的含义是如果骑士要走上位置(i,j),并且从该位置选
* 一条最优的路径,最后走到右下角,骑士起码应该具备的血量。根据dp的定义,我们最终需要的是dp[0][0]的结果。以题目的例子来
* 说,map[2][2]的值为-5,所以骑士若要走上这个位置,需要6点血才能让自己不死。同时位置(2,2)己经是最右下角的位置,即没有
* 后续的路径,所以dp[2][2]==6。
* 那么dp[i][j]的值应该怎么计算呢?
* 骑士还要面临向下还是向右的选择,dp[i][j+1]是骑士选择当前向右走并最终达到右下角的血量要求。同理,dp[i+1][j]是向下走
* 的要求。如果骑士决定向右走,那么骑士在当前位置加完血或者扣完血之后的血量只要等于dp[i][j+1]即可。那么骑士在加血或扣血
* 之前的血量要求(也就是在没有踏上(i,j)位置之前的血量要求),就是dp[i][j+1]-map[i][j]。同时,骑士血量要随时不少于1,
* 所以向右的要求为max{dp[i][j+1]-map[i][j],1)。如果骑士决定向下走,分析方式相同,向下的要求为
* max{dp[i+1][j]-map[i][j],1}。
* 骑士可以有两种选择,当然要选最优的一条,所以dp[i][j]=min{向右的要求,向下的要求}。计算dp矩阵时从右下角开始计算,选择
* 依次从右至左、再从下到上的计算方式即可。
*
* 具体请参看如下代码中的minHP1方法。
*
* @author Created by LiveEveryDay
*/
public class DungeonsAndDragons1 {
public static int minHP1(int[][] m) {
if (m == null || m.length == 0 || m[0] == null || m[0].length == 0) {
return 1;
}
int row = m.length;
int col = m[0].length;
int[][] dp = new int[row--][col--];
dp[row][col] = m[row][col] > 0 ? 1 : -m[row][col] + 1;
for (int j = col - 1; j >= 0; j--) {
dp[row][j] = Math.max(dp[row][j + 1] - m[row][j], 1);
}
int right = 0;
int down = 0;
for (int i = row - 1; i >= 0; i--) {
dp[i][col] = Math.max(dp[i + 1][col] - m[i][col], 1);
for (int j = col - 1; j >= 0; j--) {
right = Math.max(dp[i][j + 1] - m[i][j], 1);
down = Math.max(dp[i + 1][j] - m[i][j], 1);
dp[i][j] = Math.min(right, down);
}
}
return dp[0][0];
}
public static void main(String[] args) {
int[][] m = {{-2, -3, 3}, {-5, -10, 1}, {0, 30, -5}};
System.out.printf("The min HP is: %d", minHP1(m));
}
}
// ------ Output ------
/*
The min HP is: 7
*/