【中等】龙与地下城游戏问题-Java:经典动态规划结合空间压缩解法

分享一个大牛的人工智能教程。零基础!通俗易懂!风趣幽默!希望你也加入到人工智能的队伍中来!请轻击人工智能教程大家好!欢迎来到我的网站! 人工智能被认为是一种拯救世界、终结世界的技术。毋庸置疑,人工智能时代就要来临了,科… 继续阅读 前言https://www.captainai.net/troubleshooter

package live.every.day.ProgrammingDesign.CodingInterviewGuide.RecursionAndDynamicPrograming;

/**
 * 龙与地下城游戏问题
 *
 * 【题目】
 * 给定一个二维数组map,含义是一张地图,例如,如下矩阵:
 * -2 -3 3
 * -5 -10 1
 * 0 30 -5
 * 游戏的规则如下:
 * 骑士从左上角出发,每次只能向右或向下走,最后到达右下角见到公主。
 * 地图中每个位置的值代表骑士要遭遇的事情。如果是负数,说明此处有怪兽,要让骑士损失血量。如果是非负数,代表此处有血瓶,能
 * 让骑士回血。
 * 骑士从左上角到右下角的过程中,走到任何一个位置时,血量都不能少于1。
 * 为了保证骑士能见到公主,初始血量至少是多少?根据map,返回初始血量。
 *
 * 【难度】
 * 中等
 *
 * 【解答】
 * 如果map大小为MxN,经典动态规划方法的时间复杂度为O(MxN),额外空间复杂度为O(MxN)。结合空间压缩之后可以将额外空间复杂
 * 度降至O(min{M,N})。空间压缩的原理请参考“矩阵的最小路径和”问题,这里不再详述。
 *
 * 请参看如下代码中的minHP2方法。
 *
 * @author Created by LiveEveryDay
 */
public class DungeonsAndDragons2 {

    public static int minHP2(int[][] m) {
        if (m == null || m.length == 0 || m[0] == null || m[0].length == 0) {
            return 1;
        }
        int more = Math.max(m.length, m[0].length);
        int less = Math.min(m.length, m[0].length);
        boolean rowMore = more == m.length;
        int[] dp = new int[less];
        int tmp = m[m.length - 1][m[0].length - 1];
        dp[less - 1] = tmp > 0 ? 1 : -tmp + 1;
        int row = 0;
        int col = 0;
        for (int j = less - 2; j >= 0; j--) {
            row = rowMore ? more - 1 : j;
            col = rowMore ? j : more - 1;
            dp[j] = Math.max(dp[j + 1] - m[row][col], 1);
        }
        int chosen1 = 0;
        int chosen2 = 0;
        for (int i = more - 2; i >= 0; i--) {
            row = rowMore ? i : less - 1;
            col = rowMore ? less - 1 : i;
            dp[less - 1] = Math.max(dp[less - 1] - m[row][col], 1);
            for (int j = less - 2; j >= 0; j--) {
                row = rowMore ? i : j;
                col = rowMore ? j : i;
                chosen1 = Math.max(dp[j] - m[row][col], 1);
                chosen2 = Math.max(dp[j + 1] - m[row][col], 1);
                dp[j] = Math.min(chosen1, chosen2);
            }
        }
        return dp[0];
    }

    public static void main(String[] args) {
        int[][] m = {{-2, -3, 3}, {-5, -10, 1}, {0, 30, -5}};
        System.out.printf("The min HP is: %d", minHP2(m));
    }

}

// ------ Output ------
/*
The min HP is: 7
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值