类型 | 定义 | 核心特性 |
---|
随机变量 | 从样本空间 Ω(随机试验所有可能结果)到实数集 ℝ 的可测函数。 | 概率驱动:取值依赖随机试验结果,遵循概率分布(离散型/连续型)。 |
普通变量 | 确定性符号,代表未知或可变的数值(由公式或用户定义决定)。 | 确定性:取值明确,无概率分布,仅用于计算或模型。 |
特性 | 随机变量 | 普通变量 |
---|
定义域 | 样本空间 Ω(随机试验结果) | 实数集或用户定义范围 |
取值方式 | 随机映射(不确定性,概率分布) | 公式计算/用户赋值(确定性) |
概率性 | 有概率分布(期望、方差、密度函数等) | 无概率分布 |
数学工具 | 概率论(分布函数、大数定律等) | 代数、微积分等确定性工具 |
符号表示 | 大写字母(如 X , Y ) | 小写字母(如 x , y ) |
类型 | 典型应用场景 |
---|
随机变量 | 统计分析(计算期望/方差)、风险评估(保险损失模型)、金融工程(股票价格模拟) |
普通变量 | 方程求解(如 2x + 3 = 7 )、编程赋值(如 a=10 )、函数分析(如 f(x)=x² ) |
随机变量是概率驱动的数值函数(其取值具有不确定性但遵循统计分布规律);
普通变量是确定性数值的符号表示(取值由用户或公式直接决定,无概率分布)。
- 数学属性:随机变量需用概率论工具分析;普通变量仅依赖代数或微积分运算。
- 表示惯例:随机变量用大写字母(
X
),普通变量用小写字母(x
)或函数符号(f(x)
)。
随机变量的本质是 “从随机现象到实数的映射”,其值不可预测但服从统计规律;
普通变量的本质是 “人为定义的确定性符号”,其值由用户或公式直接指定。
二者核心区别在于 是否依赖概率分布描述行为。