CodeForces - 1337D Xenia and Colorful Gems(二分)

本文介绍了一种解决三序列中寻找三元素使特定距离公式最小化的算法。通过枚举中间序列元素并使用二分查找优化边界值选取,实现了高效求解。文章详细展示了算法思路、代码实现及调试过程。

题目链接:点击查看

题目大意:给出三个序列分别记为 a,b,c,现在要求分别从三个序列中找出 x , y , z ,使得 ( x - y )^2 + ( y - z )^2 + ( y - z )^2 最小,求出这个最小值

题目分析:读完题第一反应就是二分嘛,稍微理了一下思路,假设 x <= y <= z ,可以枚举其中一个数组的数作为 y ,然后在另外两个数组中,一个找到小于等于 y 的最大值记为 x ,另一个找大于等于 y 的最小值记为 z ,维护最小值就是答案了

思路非常简单,就是实现起来可能写的比较恶心,这边建议可以将函数封装一下,然后反复调用就好了

一开始想到了 splay 里恰好就有这两个操作,于是就想白嫖,把以前的代码拿下来copy过去,果不其然的TLE了,难顶,然后自己写二分过的,过了四个题之后愉快下班洗漱睡觉,在洗漱的过程中想到了 inf 可能不能作为无穷大,但自己也没法hack掉自己,就懒得在改了,第二天早晨果不其然被fst了,不过还好是小号,不然心态就崩了。。

最后补充一个小技巧,为了防止二分时对边界的判断,在每个数组中加一个 -inf 和 inf 就好了,需要注意的是,因为我的 inf 是0x3f3f3f3f ,在这个题目中不够大,所以在计算 ( x - y )^2 + ( y - z )^2 + ( y - z )^2 的函数中特判一下就行了

代码:

#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<unordered_map>
using namespace std;

typedef long long LL;

typedef unsigned long long ull;

const int inf=0x3f3f3f3f;

const int N=2e5+100;

LL a[N],b[N],c[N];

inline LL get_upper(LL a[],int n,LL x)//在数组a中找到大于等于x的最小值
{
	int l=0,r=n+1;
	LL ans;
	while(l<=r)
	{
		int mid=l+r>>1;
		if(a[mid]>=x)
		{
			ans=a[mid];
			r=mid-1;
		}
		else
			l=mid+1;
	}
	return ans;
}

inline LL get_lower(LL a[],int n,LL x)//在数组a中找到小于等于x的最大值
{
	int l=0,r=n+1;
	LL ans;
	while(l<=r)
	{
		int mid=l+r>>1;
		if(a[mid]<=x)
		{
			ans=a[mid];
			l=mid+1;
		}
		else
			r=mid-1;
	}
	return ans;
}

inline LL fun(LL x,LL y,LL z)
{
	if(x==inf||y==inf||z==inf)//特判inf
		return LLONG_MAX;
	return (x-y)*(x-y)+(x-z)*(x-z)+(y-z)*(y-z);
}

LL cal(LL a[],int na,LL b[],int nb,LL c[],int nc)//遍历数组a作为y
{
	LL ans=LLONG_MAX;
	for(int i=1;i<=na;i++)
	{
		ans=min(ans,fun(a[i],get_lower(b,nb,a[i]),get_upper(c,nc,a[i])));
		ans=min(ans,fun(a[i],get_upper(b,nb,a[i]),get_lower(c,nc,a[i])));
	}
	return ans;
}

int main()
{
#ifndef ONLINE_JUDGE
//	freopen("input.txt","r",stdin);
//	freopen("output.txt","w",stdout);
#endif
//	ios::sync_with_stdio(false);
	int w;
	cin>>w;
	while(w--)
	{
		int na,nb,nc;
		scanf("%d%d%d",&na,&nb,&nc);
		for(int i=1;i<=na;i++)
			scanf("%lld",a+i);
		for(int i=1;i<=nb;i++)
			scanf("%lld",b+i);
		for(int i=1;i<=nc;i++)
			scanf("%lld",c+i);
		a[0]=b[0]=c[0]=-inf;
		a[na+1]=b[nb+1]=c[nc+1]=inf;
		sort(a+1,a+1+na);
		sort(b+1,b+1+nb);
		sort(c+1,c+1+nc);
		printf("%lld\n",min(cal(c,nc,a,na,b,nb),min(cal(a,na,b,nb,c,nc),cal(b,nb,a,na,c,nc))));
	}


	
	







    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Frozen_Guardian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值