题目链接:点击查看
题目大意:给出 n 个竹子,初始时高度为 h[ i ],接下来每一天每个竹子都会长高 a[ i ] 个单位的高度,每一天可以砍 k 次竹子(可以是同一个),每次可以砍掉 p 个单位的高度,现在问 m 天后,n 个竹子高度的最大高度的最小值是多少
题目分析:看到询问的答案是 “最大值的最小值” 不难想到二分,于是问题转换为了,给出高度 mid,如何判断 mid 是否合法
正着去思考的话,很难想出一种合法的贪心策略,不难看出的一个小结论是:时间靠后的 “砍” 操作一定比时间靠前的更有价值,对于同一次操作而言,我放在第 k 天来砍,和放在第 k + 1 天来砍来比较,第 k + 1 天的砍操作一定不可能更差(因为第 k 天砍的话,竹子的高度可能不足 p 个单位),所以我们考虑倒着去模拟 “砍” 的这个过程
因为我们二分的这个 mid 代表的意义是:“竹子最大高度的最小值”,所以我们不妨假设所有的竹子最后的高度都是 mid(显然是可行的),然后倒着去模拟整个过程,只会涉及到两种操作:
- 每个竹子会长高 a[ i ] 个高度,倒着的话就变成了:每个竹子会减少 a[ i ] 的高度
- 每一天可以砍 k 次竹子,每次可以砍掉 p 个单位的高度,倒这的话就变成了:某个竹子的高度增加 p
如此一来,贪心策略即成立,倒着去实现该过程即可,最后的目标是,每个位置的高度都需要大于等于 h[ i ],且在执行操作的过程中高度不允许出现负数
不过如果暴力去模拟的话,正确性是显然的,但时间复杂度扛不太住,所以考虑利用数据结构优化,门槛是找最小值的时间复杂度,动态寻找最小值不难想到堆,所以我们维护一个小根堆用于维护全局最小值,实时更新即可
代码:
//#pragma GCC optimize(2)
//#pragma GCC optimize("Ofast","inline","-ffast-math")
//#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<cassert>
#include<bitset>
using namespace std;
typedef long long LL;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const int N=1e5+100;
LL n,m,k,p,h[N],a[N];
struct Node
{
int id;
LL day,cnt;
Node(){}
Node(int id,LL day,LL cnt):id(id),day(day),cnt(cnt){}
bool operator<(const Node& t)const
{
return day>t.day;
}
};
bool check(LL mid)
{
priority_queue<Node>q;
for(int i=1;i<=n;i++)
if(mid-h[i]<m*a[i])//需要砍
q.push(Node(i,mid/a[i],0));
for(int i=1;i<=m;i++)
{
for(int j=1;j<=k;j++)
{
if(q.empty())
return true;
Node cur=q.top();
q.pop();
if(cur.day<i)//特判一下过程中会出现负数
return false;
cur.cnt++;
if(mid-h[cur.id]<m*a[cur.id]-cur.cnt*p)
q.push(Node(cur.id,(mid+cur.cnt*p)/a[cur.id],cur.cnt));
}
}
return q.empty();
}
int main()
{
#ifndef ONLINE_JUDGE
// freopen("data.in.txt","r",stdin);
// freopen("data.out.txt","w",stdout);
#endif
// ios::sync_with_stdio(false);
scanf("%lld%lld%lld%lld",&n,&m,&k,&p);
for(int i=1;i<=n;i++)
scanf("%lld%lld",h+i,a+i);
LL l=0,r=1e13,ans=-1;
while(l<=r)
{
LL mid=l+r>>1;
if(check(mid))
{
ans=mid;
r=mid-1;
}
else
l=mid+1;
}
printf("%lld\n",ans);
return 0;
}