前言
在数据科学和机器学习领域,高质量的数据集是至关重要的。全球城市气候数据集是一个非常有价值的资源,可用于多种研究,包括气候变化分析、城市规划和环境科学等。本文将详细介绍如何使用 Python 爬虫技术从公共数据源中定向抓取全球城市气候数据。
1. 项目概述
1.1 项目目标
我们的目标是从一个公共数据源(例如 Kaggle 或 WorldClim)抓取全球城市气候数据,并将其保存为本地文件(如 CSV 或 JSON 格式)。这些数据包括但不限于温度、降水量、湿度等。
1.2 数据源选择
我们将使用 WorldClim 作为数据源。WorldClim 提供了全球范围内的高分辨率气候数据,包括温度、降水等多种气候变量。
1.3 技术栈
- Python:主要编程语言
- Requests:用于发送 HTTP 请求
- BeautifulSoup:用于解析 HTML 页面 <