自动控制原理题海5.3:频率响应法

这是一篇关于自动控制原理的博客,重点介绍了频率响应法的应用。文章通过一系列例题(Example 5.21 至 Example 5.30)详细解释了如何使用频率响应法来确定系统稳定性,包括奈奎斯特判据的运用,以及在不同系统参数下的闭环稳定性分析。每个例子都涵盖了系统稳定性判断、闭环极点计算和开环幅相特性曲线的分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《自动控制原理题海与考研指导》习题精选,用于知识点巩固与提升。



第五章:频率响应法
Example 5.21

已知系统开环传递函数如下,其概略幅相特性曲线如下图所示,用奈奎斯特判据确定使系统闭环稳定时开环增益KKK的范围;
G1(s)=Ks3(s+0.31)(s+5.06)(s+0.64),G2(s)=K(s+1)s(s2+8s+100),G3(s)=Ks(Ts−1),T>0 G_1(s)=\displaystyle\frac{Ks^3}{(s+0.31)(s+5.06)(s+0.64)},G_2(s)=\displaystyle\frac{K(s+1)}{s(s^2+8s+100)},G_3(s)=\displaystyle\frac{K}{s(T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FUXI_Willard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值