【LeetCode】1008. Construct Binary Search Tree from Preorder Traversal 解题报告(Python)

本文介绍了一种通过先序遍历构建二叉搜索树(BST)的方法。利用递归,找到根节点,然后根据BST特性将遍历序列分为左右子树,递归构建整棵树。

作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/construct-binary-search-tree-from-preorder-traversal/

题目描述

Return the root node of a binary search tree that matches the given preorder traversal.

(Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.)

Example 1:

Input: [8,5,1,7,10,12]
Output: [8,5,10,1,7,null,12]

此处输入图片的描述

Note:

  1. 1 <= preorder.length <= 100
  2. The values of preorder are distinct.

题目大意

给出了一个BST的先序遍历,求该BST。

解题方法

递归

先序遍历一定先遍历了根节点,所以出现的第一个数字一定是根。那么BST的左子树都比根节点小,而先序遍历要把左子树遍历结束才遍历右子树,所以向后找第一个大于根节点数字位置,该位置就是右子树的根节点。

做一个递归即可。

Python代码如下:

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def bstFromPreorder(self, preorder):
        """
        :type preorder: List[int]
        :rtype: TreeNode
        """
        if not preorder: return None
        root = TreeNode(preorder[0])
        N = len(preorder)
        i = 1
        while i < N:
            if preorder[i] > preorder[0]:
                break
            i += 1
        root.left = self.bstFromPreorder(preorder[1:i])
        root.right = self.bstFromPreorder(preorder[i:])
        return root

日期

2019 年 3 月 10 日 —— 周赛进了第一页!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值