- 题目:Heterogeneous Graph Attention Network
- 链接:https://dl.acm.org/doi/abs/10.1145/3308558.3313562
- 源码:https://github.com/Jhy1993/HAN
- 会议:WWW
- 时间:2019.05
- 摘要:本文首先提出了一种基于层次注意的异构图神经网络,包括节点级注意力和语义级注意力。具体来说,节点级的注意力旨在学习节点与其基于元路径的邻居之间的重要性,而语义级的注意力能够学习不同元路径的重要性。通过从节点级和语义级注意中学习到的重要性,可以充分考虑节点和元路径的重要性。然后,该模型通过基于元路径的邻居的分层聚合特征来生成节点嵌入。在三个真实世界的异构图上的广泛实验结果不仅显示了我们所提出的模型优于现有技术的性能,而且还表明了它对图分析具有潜在的良好解释性。
1 研究问题
- 图神经网络(GNN)作为这类图数据的一种强大的深度表示学习方法,在网络分析方面表现出了优越的性能,引起了广泛的研究兴趣。
- 深度学习最近的一个研究趋势是注意机制,它处理可变大小的数据,并鼓励模型关注数据中最突出的部分。
- 尽管注意机制在深度学习中取得了成功,但在异构图的图神经网络框架中还没有考虑到它。
- 根据元路径的不同,异构图中节点之间的关系可以具有不同的语义。由于异构图的复杂性,传统的图神经网络不能直接应用于异构图。