【论文分享】☆☆☆ 异质图神经网络模型 HAN:Heterogeneous Graph Attention Network

本文介绍了一种名为Heterogeneous Graph Attention Network(HAN)的模型,该模型结合节点级和语义级注意力机制,适用于异构图的深度学习。HAN能学习节点与邻居、元路径的重要性,适用于大规模异构图分析,实验表明其在性能和可解释性上具有优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 题目:Heterogeneous Graph Attention Network
  • 链接:https://dl.acm.org/doi/abs/10.1145/3308558.3313562
  • 源码:https://github.com/Jhy1993/HAN
  • 会议:WWW
  • 时间:2019.05
  • 摘要:本文首先提出了一种基于层次注意的异构图神经网络,包括节点级注意力和语义级注意力。具体来说,节点级的注意力旨在学习节点与其基于元路径的邻居之间的重要性,而语义级的注意力能够学习不同元路径的重要性。通过从节点级和语义级注意中学习到的重要性,可以充分考虑节点和元路径的重要性。然后,该模型通过基于元路径的邻居的分层聚合特征来生成节点嵌入。在三个真实世界的异构图上的广泛实验结果不仅显示了我们所提出的模型优于现有技术的性能,而且还表明了它对图分析具有潜在的良好解释性。

1 研究问题

  • 图神经网络(GNN)作为这类图数据的一种强大的深度表示学习方法,在网络分析方面表现出了优越的性能,引起了广泛的研究兴趣。
  • 深度学习最近的一个研究趋势是注意机制,它处理可变大小的数据,并鼓励模型关注数据中最突出的部分。
  • 尽管注意机制在深度学习中取得了成功,但在异构图的图神经网络框架中还没有考虑到它。
  • 根据元路径的不同,异构图中节点之间的关系可以具有不同的语义。由于异构图的复杂性,传统的图神经网络不能直接应用于异构图。

<

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vector<>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值