Numpy和Pandas基础操作的一些注意事项

本文详细解析了Pandas和Numpy在数据处理中的关键操作技巧与注意事项,包括数据选择、复制、删除及布尔索引等核心功能,帮助读者提升数据处理效率。

Pandas操作的一些注意事项

  • 从DataFrame中选取的列是数据的视图而不是拷贝,因此对该列的操作会映射到DataFrame中。如果需要复制,需要显式的调用copy()方法。
  • 如果嵌套字典被赋值给DataFrame,pandas会将键作为列索引,内部字典的键作为行索引。如果行索引未指定,则为0,1,2。
  • drop会默认按照行标签进行删除(即,axis=0),inplace=True时会清除被删除的数据。
  • DataFrame[:2]选择的是列,注意与下一条的不同;在广播机制中同样按照列进行匹配,按行进行广播,需要修改则令axis=0;各种函数时也是在列上进行操作。
  • loc[[index标签],[columns标签]]和iloc[[行整数标签],[列整数标签]],为了保证语义一致性,在有轴索引为整数索引时,请避免使用loc。

Numpy操作的一些注意事项

  • 注意!Numpy底层由C语言构建,而且存储在连续的内存块上,所以数据占用内存小,操作速度快。
  • 在用astype()方法对string数据进行转换时务必注意,numpy不会给出数据修正的提示。
  • numpy中的切片也是源数据的视图而不是拷贝。
  • 标量的赋值同样会触发广播机制。
  • 多维数据的切片默认按行进行切片,类比pandas中的iloc
  • 当使用bool选择数据时,例如array[names==‘Bob’],其中names为数组,如果发生错误,numpy不会报错,所以使用时务必保证bool数组与数组长度一致。
  • and和or对Bool数组无用,请使用&或者|
  • 神奇索引arr[[1,2],[3,4]]类比iloc,返回的是数据的复制对象,arr[1,3]索引返回的是数据的视图。
  • 善用np.where(cond,x,y)代替条件判断
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data_Designer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值