一、频率域增强原理
将遥感图像从空间域变换到频率域,把RGB 彩色图像转换成一系列不同频率的二维正弦波傅立叶图像,然后在频率域内对傅立叶图像进行滤波、掩膜等各种编辑,减少或消除部分高频成分或低频成分;最后再把傅立叶图像变换到RGB 彩色空间域,得到经过处理的彩色图像。傅立叶变换主要用于消除周期性噪声,此外,还可消除由于传感器异常引起的规则性错误。
一、快速傅立叶变换原理
指数运算是应用一定的数学方法,将遥感图像中不同波段的灰度值进修各种组合运算,计算反映矿物及植被的常用比率和指数。各种比率和指数与遥感图像类型(传感器)有密切的关系。
核心思想:从“空间域”到“频率域”
-
空间域:这是我们平时看遥感图像最直观的方式。图像由像素组成,每个像素有自己的位置 (x, y) 和灰度值 (DN)。我们在这个域里分析的是地物的形状、大小、位置和纹理。
-
频率域:傅立叶变换提供了一种全新的视角。它告诉我们图像是由哪些不同频率的“成分”组合而成的。在这个域里,我们分析的是图像的周期性、节律性和纹理粗细。
-
高频成分:对应图像中灰度值剧烈变化的部分。例如,边缘、轮廓、噪声、锐利的细节、小目标物体。想象一下屋顶的边缘、田埂、道路的边界。