Apache IoTDB:国产时序数据库的崛起与工业物联网的未来

📑前言

在工业物联网的浪潮中,数据不再是副产品,而是驱动决策的核心资产。"随着物联网、工业互联网和智能监控的迅猛发展,时序数据正以前所未有的速度爆发。据预测,到2025年全球物联网设备将达750亿台,每秒都在产生海量的时间序列数据。如何高效地存储、管理与分析这些数据,已成为企业数字化转型的关键挑战。

作为一名长期深耕数据底层技术的开发者,我深刻体会到:选择一款合适的时序数据库,不仅关乎系统性能,更直接影响业务的稳定性与未来扩展性。今天,我想结合行业趋势与真实案例,和大家聊聊时序数据库的选型逻辑,并重点分享一款让我眼前一亮的开源利器——Apache IoTDB。

在这里插入图片描述

一、为什么需要时序数据库?

1.1 什么是时序数据?

时序数据,也称为时间序列数据,是指按时间顺序记录的同一统计指标的数据集合。这类数据的来源主要是能源、工程、交通等工业物联网强关联行业的机器设备和传感器,如汽车的车速、发动机转速,发电风车的功率、电压、电流等[5]

在这里插入图片描述

1.2 时序数据的典型特征

  • 测点多:在工业领域,设备数量可达百万级别,数据测点可达亿级,并随业务增长动态增加。
  • 采样频率高:在部分振动状态监控场景下,采样频次可达1kHz。
  • 存储成本高:数据的月增量可达10TB以上,并需长期存储海量历史数据[5]

在这里插入图片描述

时序数据库是专门用于管理时序数据的数据库类型。随着物联网设备和数据量的爆炸式增长,时序数据库通过管理和分析历史数据以及新产生的时序数据,能够助力工业企业实现数字化转型、工业4.0升级,进而达到降低成本、提高效率、提升产品质量等目的[5]

二、IoTDB 诞生的价值

2.1 技术背景与自主研发

IoTDB是一款国产自研的物联网原生时序数据库,其技术发源于清华大学,目前已历经13年的发展。IoTDB的诞生,主要是为了解决工业物联网时序数据管理的实时性、压缩比、分布式部署等多方面痛点[6][7][10]

在这里插入图片描述

开源版IoTDB是Apache基金会时序数据领域第一个Top-Level项目,其核心团队成立了天谋科技(北京)有限公司(以下简称“天谋科技”),专注IoTDB产品的打磨[6][7]

2.2 核心功能与技术架构

IoTDB提供数据采集工具,可对接多类协议,底层为纯自研列式存储文件系统TsFile,在此基础上设计存储、查询计算、流处理、分析引擎,以及系统管理模块与多种应用工具,并支持对接大数据生态,与单机版、分布式版、双活版等多类形态部署[6][7]

在这里插入图片描述

通过多项自研技术创新成果,IoTDB在不依赖第三方系统的情况下,可以实现高吞吐、高压缩、高可用的性能表现,并建立了物联网场景时序数据横向与纵向解决方案[7]

2.3 横向与纵向解决方案

  • 横向解决方案:以IoTDB为时序数据系统内核,通过其优异的存、读、写能力,上游对接多类采集协议,下游对接多类数据分析处理平台,可支持时序数据单平台采集、存储、计算、管理、应用全流程。
  • 纵向解决方案:将IoTDB部署于多个平台,实现跨厂、跨车间应用,IoTDB强大的数据同步能力与简便的数据同步机制,可支持跨平台端(设备侧/车间侧)、边(厂侧)、云(集团侧)数据协同[7]
    在这里插入图片描述

三、IoTDB 七大功能特性

IoTDB能够实现稳定、高效、易用的时序数据管理方案,在国际数据库基准测试性能排行榜benchANT中,IoTDB的读、写、压缩指标均排名第一。其功能特性可简单归结为“管得好、接得住、存得下、处理强、实时性、智能性、协同性”七个词[7]

3.1 管得好:基于业务,便捷建模

物联网场景中产线、设备产生的BOM数据是按照层级,彼此关联起来的。IoTDB实现了树形时序数据模型,能够直观地与BOM数据进行对应。同时对于需要新增或变更的设备,也能够做到自动化同步,有效降低了时序数据管理与运维的成本[7]

在这里插入图片描述

IoTDB自研的基于PBTree的元数据管理模型,可以实现亿级的时间序列管理规模,并降低数据冗余,能够通过高效的元数据存储提高IoTDB管理的数据质量。在树形模型基础上,IoTDB可以对序列级的权限进行更好的控制,比如可以为集团级、工厂级、产线级数据设置不同的权限范围,进而达到多层级数据高效管理的目的[7]

3.2 接得住:高频数据、乱序数据高写入

  • 高频数据写入:传统时序数据库一般因为采用行式数据写入,只能支持到秒级数据接入。IoTDB通过底层文件TsFile支持的列式数据写入,达到毫秒级的数据接入,相比竞品有10倍的性能优势[7]
  • 乱序数据写入:乱序数据在实际场景中非常常见,IoTDB首创了乱序分离存储引擎,用独有的顺乱序判断机制,将顺序数据与乱序数据分开,并通过多种空间合并的方法,消除乱序数据。IoTDB的乱序数据处理效率可以达到竞品的4倍以上[7]
    在这里插入图片描述

3.3 存得下:首创标准文件格式TsFile

时序数据存储方面一直面临海量数据导致存储成本高昂的问题,而IoTDB通过自研的时序数据标准文件格式TsFile解决了这一难题。TsFile结合列式存储、编码算法、分段摘要信息、文件级索引等架构,相比通用的文件格式,对时序数据的压缩比可以提升20%以上,达到无损压缩10倍以上、无损压缩100倍以上的压缩比[7]

在这里插入图片描述

另外,TsFile架构针对时序数据特性的优化,也使得IoTDB有效提升了时序数据的写入与查询效率。相比竞品,IoTDB的写入吞吐量提升了2-3倍,查询吞吐量则提升了2-10倍。值得一提的是,继IoTDB之后,TsFile已经被Apache基金会通过成为时序数据领域第二个Top-Level项目,这意味着其不但能够与IoTDB共同使用,还可以作为单独文件格式进行使用[7]

3.4 处理强:支持时序特性查询分析

时序数据因为强时间属性,在查询时用户很可能有一些特殊的、强关联时间的需求。IoTDB可提供降采样查询、最新点查询和时间分段查询。降采样查询可以去掉原始高频数据不必要的细节,还原数据的基本趋势;最新点查询通过缓存每个设备的最新值,实现毫秒级响应;时序分段查询可以根据数据的变化阈值、中断间隔等维度进行多样的分段查询[7]

在这里插入图片描述

IoTDB还提供一套UDF(用户自定义函数)体系,提供超过70种内置函数,可满足数据修复、数据图像、异常检测等时序数据计算需求。如果用户还有在这套体系之外的计算需求,也可自行在IoTDB中编辑、保存常用的UDF函数[7]

3.5 智能化:AINode拥抱机器学习

为了更好地让IoTDB实现智能化分析,IoTDB团队在2023年为IoTDB集群引入了智能分析节点AINode。AINode通过与集群管理节点(ConfigNode)、数据节点(DataNode)的交互,可以为用户提供模型注册、管理、推理的能力,结果可直接在IoTDB返回。同时也涵盖了时序数据适用的多类算法和自研模型,能够实现序列预测、异常预测等时序分析场景需要的深度学习功能[7][8]

在这里插入图片描述

3.6 实时性:内置实时流处理功能

IoTDB团队在2023年加入了实时流处理功能,可不间断地处理数据,并及时发现异常或分析趋势。IoTDB中,一个流处理任务(Pipe)包含抽取(Extract)、处理(Process)、发送(Connect)三个子任务,三个子任务可由三种独立插件进行实现,并允许用户自定义配置三个子任务的处理逻辑和具体属性,通过组合不同的子任务内核,实现灵活的数据ETL能力[7][8]

在这里插入图片描述

利用流处理框架,可以在IoTDB搭建完整、灵活的数据链路,实现毫秒级的低延迟响应,满足端边云数据同步、双活集群部署、网闸穿透、实时告警、数据订阅、异地灾备、读写负载分库等场景需求[7][8]

3.7 云边协同:文件+引擎,全面数据协同

工业物联网应用场景中,产生数据的设备可能来自于多个厂站,数据经常需要汇总至省域或集团进行分析,所以时序数据库需要多终端、多环境、多平台部署。IoTDB的数据同步基于可插拔的TsFile文件,并支持操作级、文件级的多种传输模式,与跨网闸传输、加密传输。同一个文件类型可在端、边、云侧进行协同传输,同步方案的易用性得以保障;传输模式多样则保障数据传输的实时性、吞吐量、安全性[7]

在这里插入图片描述

同时,IoTDB的数据同步支持数据在边侧进行必要的数据清洗与计算操作,再向云侧进行同步,能够最大化地利用边侧的算力资源,同时节省云侧算力资源。此外,企业因为业务扩张,往往也经常需要扩展数据库部署规模。IoTDB的分布式架构具备高扩展性,可以达到秒级扩容、无需迁移数据、灵活调整[7]

四、Apache IoTDB的应用领域

在这里插入图片描述

目前,天谋科技构建的IoTDB解决方案在业内得到了广泛应用,覆盖“天、空、地、海”各个层面。IoTDB落地的主要行业与应用效果有:

  • 电力:已有案例可支持千万级设备并发,管理百亿级累计数据,并支持设备端侧、现场边缘侧与中心云侧的端边云数据协同传输,与电力行业特性的跨网闸数据传输[7][8]
  • 储能:已有案例可达到毫秒级数据写入、毫秒级查询响应、超90倍压缩比,并实现大字段数据自动挂载、多字段、多路径、多关键词复杂查询等功能[7][8]
  • 钢铁:已有案例可用少量服务器管理集团全量数据,涉及装备数百万,时间序列达千万,并加速了数据的加工、抽取、备份过程,性能提升1个量级[7][8]
  • 太空:IoTDB于北邮一号卫星边缘侧成功部署,实现低CPU使用率及内存占用,与不定期关机场景下数据的自动保存与恢复,有效支持星-地数据协同[7][8]
  • 飞机制造:已有案例压缩率可达10倍,空间占用缩减为30%,预计节省百万存储成本,并协助实现异地工厂端与云中心侧的分布式数据互通和统一管理,与应用层、产线层、设备层多个应用系统的数据存储与调用[7][8]
  • 轨道交通:已有城轨案例管理列车数能力增加1倍,采样时间提升60%,需要服务器数降为1/9,月数据增量压缩后大小下降95%,实现日增4140亿数据点管理[7][8]
  • 车联网:已有案例管理约1.5亿时间序列,稳定支持千万级写入数据与单车时间范围查询、单车全时间序列最新点查询结果毫秒级返回[7][8]
  • 先进制造:已有案例压缩比达10倍以上,支持多种查询方式与多点位同时查询的需求,针对流程长、工艺复杂、精度高、数据量大的制造场景,支撑对核心指标进行实时分析[7][8]

目前,应用IoTDB的工业企业已经超过1000家,其中包括国家电网、中核集团、中航成飞、中国中车、中国气象局等国内企业,和博世力士乐、德国宝马、西门子、日本小松等海外企业。此外,IoTDB还被集成应用于华为、阿里、海尔、东方国信、用友等多个工业互联网平台中[7][8]

五、快速上手:三步体验IoTDB

5.1 下载安装

访问官方下载页:https://iotdb.apache.org/zh/Download/,获取最新版本[1]

5.2 启动服务

解压后执行 sbin/start-server.sh,默认6667端口启动[3]

5.3 写入第一条数据(Java示例)

import org.apache.iotdb.session.Session;

public class FirstIoTDB {
    public static void main(String[] args) {
        try (Session session = new Session("127.0.0.1", 6667, "root", "root")) {
            session.open();
            
            // 创建时间序列
            String device = "root.vehicle.d001";
            session.createTimeseries(device + ".speed", TSDataType.DOUBLE, TSEncoding.PLAIN);
            
            // 写入数据
            long time = System.currentTimeMillis();
            double speed = 85.5;
            session.insertRecord(device, time, new String[]{"speed"}, new Object[]{speed});
            
            // 查询验证
            try (SessionDataSet dataset = session.executeQueryStatement("SELECT * FROM root.vehicle.*")) {
                while (dataset.hasNext()) {
                    System.out.println(dataset.next());
                }
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

结语

作为专为物联网与时序数据打造的高性能数据库,Apache IoTDB 凭借高效存储、极速读写、灵活扩展三大核心优势,成为处理大规模 IoT 数据及时序数据的理想之选。其开源、分布式、易集成的特性,更让它在物联网、工业监控、智能城市等领域具备广泛且深入的应用潜力。​

若你正为海量时序数据的存储、处理难题困扰,不妨给 Apache IoTDB 一次实践机会 —— 它或许就是帮你搭建高效、稳定、可扩展数据架构的关键钥匙,为你的业务数据管理突破瓶颈。

官网地址:https://iotdb.apache.org
GitHub:https://github.com/apache/iotdb

评论 48
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸽芷咕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值