人工智能(A)的快速发展依赖于三个核心要素:数据,算法,算力。这个观点已经得到了业界的高度认可。只有这三个要素同时满足了才能加速人工智能的大发展。随着人工智能大模型规模变大以及普及应用,人工智能对能源的需求也在不断加大,逐渐成为人工智能发展关键因素之一。
从感知、认知、决策,到学习、执行、社会协作,最终到情感的理解,大模型的发展,已经逼近临界点。(但是不是我们的想象力不够充分呢?)
上图中的一些概念,这里做一个汇总和解释:
VGG - Visual Geometry Group (视觉几何小组)网络,是一种卷积神经网络(CNN)架构,由牛津大学的视觉几何小组提出,常用于图像识别任务。
ResNet - Residual Network (残差网络),是由微软研究院提出的深度学习模型,通过引入“残差块”来解决深层神经网络中的梯度消失问题。
Deep Speech - 深度语音,是Mozilla开源的一个基于深度学习的语音识别系统。
DNN - Deep Neural Networks (深度神经网络),是一种具有多个隐藏层的人工神经网络模型,能够学习数据的复杂结构。
CNN - Convolutional Neural Networks (卷积神经网络),主要用于图像处理领域,其结构包含卷积层、池化层和全连接层等。
RNN - Recurrent Neural Networks (循