我终于本地部署了DeepSeek-R1(图文全过程)

找了一个空闲的时间,仔细研究了一下本地化部署DeepSeek。电脑不行,但是部署起来并不是很难。

看来如果做一个简单的一体机,还是很容易的,不过需要开启本地知识库的能力,建立向量数据库,并能够查询。这个也在测试,关注我,后续给大家放出更详细的记录。

一、测试你的电脑配置(了解基本参数的概念)

很多跃跃欲试的人,肯定是因为没有GPU,或者觉得自己的电脑配置太低,就放弃了测试,其实只有CPU的电脑,也是可以跑大模型的。当然速度会慢很多,不过学习和体会是够用了。知行合一,不去试一下,肯定对很多过程就没有更具体的感觉。

这里推荐一个很好用的工具:

DeepSeek 模型兼容性检测

点击,https://tools.thinkinai.xyz/,就可以测试了。

这是我的电脑的配置,win10pro,内存16G,共享的显存8G,555……

这是推荐的我的版本:

从图上看到,我可以运行DeepSeek-r1:8b版本,实际证明,这个版本还是可以跑的,就是有点慢,能力也还可以,最后有测试的效果。

这边就不行了,一般我们常说的4090的板子,16G显存左右的,都是能部署到32b就到了。

这个网站提供一个计算器,你可以根据自己需求情况,看配置什么样的计算机。

序列长度是模型一次能处理的最大token数:

• 2K (2048): 标准长度,适合一般对话

• 4K (4096): 中等长度,可处理较长文档

• 8K (8192): 较长上下文,适合长文分析

• 32K+: 超长上下文,可处理书籍级内容

注意事项:

• 序列长度越长,显存占用越大

• 显存占用与序列长度成正比

• 建议根据实际需求选择合适长度

模型参数数量是指神经网络的"大脑容量",通常以十亿(B)为单位:

• 参数越多,模型的能力越强

• 1B = 10亿参数

• 7B/14B 适合单机部署

• 32B+ 通常需要多卡部署

常见参考:

• ChatGLM2-6B: 6B参数

• DeepSeek-7B: 7B参数

• Llama2-13B: 13B参数

• DeepSeek-67B: 67B参数

参数量越大,需要的显存就越多,请根据实际硬件配置选择合适的模型规模。

我本地部署的是8b,实际已经到了80亿参数。

批次大小决定了模型一次处理的请求数量:

• 1-16: 低延迟场景

- 适合实时聊天

- 最小响应时间

- 较低显存占用

• 32-64: 平衡延迟和吞吐量

- 适合混合工作负载

- 中等显存占用

- 高效资源利用

• 64+: 高吞吐量场景

- 批处理

- 最大GPU利用率

- 更高显存需求

注意:

• 批次越大,显存占用越高

• 根据实际并发需求选择

• 动态批处理可自动调整批次大小

• 设置批次大小时考虑内存约束

• Tensor并行影响最佳批次大小

大家比较陌生的估计是这个量化类型,他的含义如下:

量化是压缩模型参数的一种方法,不同量化类型对应不同的参数存储大小:

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

giszz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值