Skip to content

Production-ready MCP server that provides LLMs with essential random generation abilities, built entirely on Python's standard library.

License

Notifications You must be signed in to change notification settings

zazencodes/random-number-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

19 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Random Number MCP

Essential random number generation utilities from the Python standard library, including pseudorandom and cryptographically secure operations for integers, floats, weighted selections, list shuffling, and secure token generation.

πŸ“Ί Demo Video

random_number_mcp_zazencodes_20250626_github.mp4
Random Number MCP server

🎲 Tools

Tool Purpose Python function
random_int Generate random integers random.randint()
random_float Generate random floats random.uniform()
random_choices Choose items from a list (optional weights) random.choices()
random_shuffle Return a new list with items shuffled random.sample()
random_sample Choose k unique items from population random.sample()
secure_token_hex Generate cryptographically secure hex tokens secrets.token_hex()
secure_random_int Generate cryptographically secure integers secrets.randbelow()

πŸ”§ Setup

Claude Desktop

Add this to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "random-number": {
      "command": "uvx",
      "args": ["random-number-mcp"]
    }
  }
}

πŸ“‹ Tool Reference

random_int

Generate a random integer between low and high (inclusive).

Parameters:

  • low (int): Lower bound (inclusive)
  • high (int): Upper bound (inclusive)

Example:

{
  "name": "random_int",
  "arguments": {
    "low": 1,
    "high": 100
  }
}

random_float

Generate a random float between low and high.

Parameters:

  • low (float, optional): Lower bound (default: 0.0)
  • high (float, optional): Upper bound (default: 1.0)

Example:

{
  "name": "random_float",
  "arguments": {
    "low": 0.5,
    "high": 2.5
  }
}

random_choices

Choose k items from a population with replacement, optionally weighted.

Parameters:

  • population (list): List of items to choose from
  • k (int, optional): Number of items to choose (default: 1)
  • weights (list, optional): Weights for each item (default: equal weights)

Example:

{
  "name": "random_choices",
  "arguments": {
    "population": ["red", "blue", "green", "yellow"],
    "k": 2,
    "weights": [0.4, 0.3, 0.2, 0.1]
  }
}

random_shuffle

Return a new list with items in random order.

Parameters:

  • items (list): List of items to shuffle

Example:

{
  "name": "random_shuffle",
  "arguments": {
    "items": [1, 2, 3, 4, 5]
  }
}

random_sample

Choose k unique items from population without replacement.

Parameters:

  • population (list): List of items to choose from
  • k (int): Number of items to choose

Example:

{
  "name": "random_sample",
  "arguments": {
    "population": ["a", "b", "c", "d", "e"],
    "k": 2
  }
}

secure_token_hex

Generate a cryptographically secure random hex token.

Parameters:

  • nbytes (int, optional): Number of random bytes (default: 32)

Example:

{
  "name": "secure_token_hex",
  "arguments": {
    "nbytes": 16
  }
}

secure_random_int

Generate a cryptographically secure random integer below upper_bound.

Parameters:

  • upper_bound (int): Upper bound (exclusive)

Example:

{
  "name": "secure_random_int",
  "arguments": {
    "upper_bound": 1000
  }
}

πŸ”’ Security Considerations

This package provides both standard pseudorandom functions (suitable for simulations, games, etc.) and cryptographically secure functions (suitable for tokens, keys, etc.):

  • Standard functions (random_int, random_float, random_choices, random_shuffle): Use Python's random module - fast but not cryptographically secure
  • Secure functions (secure_token_hex, secure_random_int): Use Python's secrets module - slower but cryptographically secure

πŸ› οΈ Development

Prerequisites

  • Python 3.10+
  • uv package manager

Setup

# Clone the repository
git clone https://github.com/example/random-number-mcp
cd random-number-mcp

# Install dependencies
uv sync --dev

# Run tests
uv run pytest

# Run linting
uv run ruff check --fix
uv run ruff format

# Type checking
uv run mypy src/

MCP Client Config

{
  "mcpServers": {
    "random-number-dev": {
      "command": "uv",
      "args": [
        "--directory",
        "<path_to_your_repo>/random-number-mcp",
        "run",
        "random-number-mcp"
      ]
    }
  }
}

Note: Replace <path_to_your_repo>/random-number-mcp with the absolute path to your cloned repository.

Building

# Build package
uv build

# Test installation
uv run --with dist/*.whl random-number-mcp

Release Checklist

  1. Update Version:

    • Increment the version number in pyproject.toml and src/__init__.py.
  2. Update Changelog:

    • Add a new entry in CHANGELOG.md for the release.

      • Draft notes with coding agent using git diff context.
      Update the @CHANGELOG.md for the latest release.
      List all significant changes, bug fixes, and new features.
      Here's the git diff:
      [GIT_DIFF]
      
    • Commit along with any other pending changes.

  3. Create GitHub Release:

    • Draft a new release on the GitHub UI.
      • Tag release using UI.
    • The GitHub workflow will automatically build and publish the package to PyPI.

Testing with MCP Inspector

For exploring and/or developing this server, use the MCP Inspector npm utility:

# Install MCP Inspector
npm install -g @modelcontextprotocol/inspector

# Run local development server with the inspector
npx @modelcontextprotocol/inspector uv run random-number-mcp

# Run PyPI production server with the inspector
npx @modelcontextprotocol/inspector uvx random-number-mcp

πŸ“ License

MIT License - see LICENSE file for details.

🀝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

πŸ“š Links

About

Production-ready MCP server that provides LLMs with essential random generation abilities, built entirely on Python's standard library.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages