文 / Abhinav Rastogi 与 Pranav Khaitan,Google Research
智能助理的功能十分强大,可以帮助用户完成各式各样的任务,如查找航班、搜索附近的活动和电影、进行预订、从网络上获取信息等等。智能助理为网络上的各类服务提供统一的自然语言处理接口,从而向用户提供服务。像 Google 助理这样大型的智能助理,需要与不断增加的大量服务集成。这些服务涉及诸多领域,但各服务之间的功能时有重叠。
无需收集额外数据或重新训练模型即可轻松支持新服务,以及降低维护工作量,都是适应未来发展的必要条件。
尽管智能助理这一领域已取得很多方面的重大进展,但最先进 (SOTA) 的模型往往忽视很多实际问题。部分原因是缺少智能助理所面临的问题描述以及相应规模和复杂性的数据集。
在最近发表的论文《面向可扩展的多领域对话代理:架构引导对话数据集 (Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset)》中,我们通过引入新的数据集来解决这些问题。
架构引导对话 (Schema-Guided Dialogue Dataset, SGD) 数据集是任务导向型对话的最大公开可用语料库,涵盖了 17 个领域的 18000 多条对话。数据集配有各种注释,可作为大规模智能助理的意图预测、语义槽填充、状态追踪(即估计用户目标)和语言生成等任务的有效测试平台。
我们还提出构建智能助理的 架构引导方法 (Schema-Guided Approach) 来解决上述问题。此方法在所有服务和领域中使用单一模型,不含特定于领域的参数。基于架构引导方法和 BERT