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Parametrization Aligned T-mesh Quad Layout

Figure 1: Given a seamless parametrization of a surface as input we construct a non-conforming T-mesh aligned with it. A modified version
of the motorcycle graph is employed for this purpose, in which traces do not stop at the first collision. We solve an integer linear program
to assign integers to the arcs of this T-mesh. By carefully constraining this quantization, the result implies a coarse conforming quad layout
whose separatrices deviate less than a user given bound from the directions prescribed by the seamless input parametrization.

Abstract
We present a robust and fast method for the creation of conforming quad layouts on surfaces. Our algorithm is based on the
quantization of a T-mesh, i.e. an assignment of integer lengths to the sides of a non-conforming rectangular partition of the
surface. This representation has the benefit of being able to encode an infinite number of layout connectivity options in a finite
manner, which guarantees that a valid layout can always be found. We carefully construct the T-mesh from a given seamless
parametrization such that the algorithm can provide guarantees on the results’ quality. In particular, the user can specify a
bound on the angular deviation of layout edges from prescribed directions. We solve an integer linear program (ILP) to find a
coarse quad layout adhering to that maximal deviation. Our algorithm is guaranteed to yield a conforming quad layout free of
T-junctions together with bounded angle distortion. Our results show that the presented method is fast, reliable, and achieves
high quality layouts.

CCS Concepts
• Computing methodologies → Computer graphics; Mesh models; Mesh geometry models; Shape modeling;

1. Introduction

Quad meshes are the preferred discrete surface representation for
many shape modeling applications of design and engineering alike.
Therefore, the automatic generation of such meshes has been an
ongoing topic of research in computer graphics. For a high quality
quad mesh, individual elements should have angles close to π/2 and
be aligned in certain ways, e.g. to the underlying surface’s prin-
cipal curvature directions. A variety of approaches have been ex-
plored for the generation of quad meshes [BLP∗13]. A class of
algorithms with a particular focus on element shape and align-
ment quality is that of parametrization-based field guided methods
[KNP07, BZK09, KMZ11, BCE∗13, PPTSH14, ESCK16].

An additional quality criterion that these methods, however, do

not explicitly promote is the global structure of the mesh, in partic-
ular the simplicity of the mesh’s so-called block structure or base
complex [BLP∗13]§1.1. This aspect is closely related to the ques-
tion how the irregular vertices are connected in the mesh by se-
quences of edges. This connectivity constitutes the mesh’s quad
layout [Cam17]. If the quad mesh has a simple, i.e., a coarse layout
it can be viewed as a “mesh of meshes”, a coarse quad partition
with finer regular quad grids inside each patch (Figure 1 right).
This enables the construction of mesh hierarchies, the structured
parametrization of the mesh over simple domains, or the definition
of spline spaces on top of the mesh [TPP∗11, MAB∗19, HSJ∗20].

In this paper we present an algorithm for the creation of coarse
quad layouts on 2-manifold surfaces. Such layouts can then, for in-
stance, be refined to block-structured quad meshes, or be passed as
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connectivity constraints to the above mentioned (natively layout-
unaware) quad mesh generation techniques. The layout construc-
tion – akin to the above parametrization-based mesh generation
methods – is built on top of a seamless surface parametrization.
This allows us to offer explicit control over the layout’s singu-
larity configuration and its directional alignment, to reliably yield
valid layouts, and to share a common foundation with mesh gen-
eration techniques for seamless integration. As a particular feature,
our method offers explicit and precise control over the balance be-
tween the two key opposing objectives inherent to quad layouts:
coarseness and directional alignment.

Problem Statement: Given a seamless surface parametrization
with arbitrary singularities on a surface of arbitrary topology, gen-
erate a coarse quad layout with exactly these singularities as irreg-
ular nodes such that its arcs (also called separatrices) do not direc-
tionally deviate from the parametrization’s isolines by more than a
user-given angular bound α.

After reviewing previous methods for the creation of coarse quad
layouts in Section 2, we describe in Section 3 how we construct a
T-mesh by tracing parametric iso-lines of a seamless parametriza-
tion taken as input. In our method we implicitly encode layout con-
nectivity via a discrete function on this T-mesh. Section 4 details
this encoding and shows how non-negative integers can be assigned
to the T-mesh’s arcs such that a valid and high quality layout is im-
plied. Such an assignment, called quantization, can be found by
solving an integer linear program as presented in Section 5, before
ultimately making the layout explicit in Section 6. We show the ef-
fectiveness of our algorithm on a variety of examples in Section 7.
Figure 1 illustrates the process.

2. Related Work

Early work that involved the generation of quad layouts as a sub-
step produced rather unstructured layouts without any particular
form of shape-aware directional alignment [EH96, BMRJ04]. Later
this problem received dedicated attention and subsequent methods
often take some form of directional guidance into account, whether
by means of the underlying surface’s principal curvature directions,
or more flexibly and controllably by specifically designed or pre-
scribed cross fields, quad meshes, or seamless parametrizations.

Layout Simplification. For instance, the method by Bommes et
al. [BLK11] takes as input a quad mesh with a possibly dense base
complex and iteratively modifies it so as to remove certain helical
connectivity patterns – which are one, though not the sole cause
of low quality base complexes. A coarser quad layout can then be
extracted from the modified quad mesh.

Tarini et al. [TPP∗11] follow a similar strategy but enable more
general modifications by working directly on separatrices (i.e., the
paths forming the layout’s arcs, its patches’ borders). They itera-
tively improve a layout energy which is based on length and di-
rection deviation of the separatrices by removing a separatrix and
bringing the then incomplete layout back into a (coarser) complete
state by a series of separatrix reconnections and an insertion.

Instead of starting with conforming dense quad layouts, Vier-
tel et al. [VOS19] start from an initial non-conforming layout, a

T-mesh with many T-junctions. It is obtained by tracing stream-
lines of a surface cross field. In this layout so-called chord collapses
are applied greedily, in order from narrow to wide, while excluding
collapses that would result in too much directional deviation. Par-
ticularly on complex or closed surfaces, T-junctions may remain in
the final layout, making it non-conforming.

These methods have in common that modifications are applied
iteratively in a greedy fashion.

Layout from Separatrix Candidates. A common strategy to cre-
ate layouts from scratch is based on finding a set of separatrix can-
didates, i.e., paths connecting pairs of prescribed (irregular) layout
nodes in topologically distinct ways, from which a subset is then
selected to define a complete layout.

Razafindrazaka et al. [RRP15] trace isolines of a seamless pa-
rametrization, starting from its singularities (which form the lay-
out’s irregular nodes). Whenever two traces meet, this implies a
separatrix candidate between their two origin singularities. Each
candidate is associated with a cost, penalizing directional deviation
from the parametric isolines. A binary problem is then solved to
select a cost-minimizing subset that properly connects all singular-
ities without crossing in improper ways. In theory the candidate set
is infinite; in practice one needs to restrict to a finite subset. This
may preclude the existence of a valid solution (or a high-quality so-
lution). Tracing up to a maximum distance limit is reported to com-
monly work well, but the existence of a solution is not guaranteed
(unless trial-and-error with increasing distance limit is performed).

Pietroni et al. [PPM∗16] follow a similar approach but create
separatrix candidates based on a cross field [VCD∗16] rather than
a parametrization (which is harder to obtain with the required prop-
erties [CSZZ19]). Similar to [RRP15] they solve a binary linear
program to choose a non-conflicting subset of these. As a conse-
quence of not deriving directional guidance from a parametrization
(which corresponds to an integrable cross field) but rather from
a generic cross field, a complete conforming quad layout cannot
be guaranteed; T-junctions have to be accepted, similar to the ap-
proach of Viertel et al. [VOS19] discussed above. T-junctions may
be reduced by increasing the number of separatrix candidates es-
tablished for each singularity or by iterating the process with fixed
partial layout, but complete removal can only be achieved by in-
serting additional irregularities.

For both these methods, runtime, quality, and even the existence
of a solution depend on the precomputed set of separatrix candi-
dates. If the set is chosen too small there may be no valid subset.
Increasing the candidate set size at the cost of increased runtime
only increases the probability of program feasibility. In contrast,
our formulation, instead of using a binary program which picks
separatrices from a finite set of candidates, employs an integer pro-
gram which can choose from an infinite set of separatrices and is
always guaranteed to be feasible.

[RP17] and [ZZY16] propose further candidate set based meth-
ods, but start from a quad mesh as input. This effectively enables
a fallback to the quad mesh itself or its base complex as a valid
(though commonly rather dense) output layout in case no other so-
lution is found due to the involved restriction.
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Dual Approach. Campen et al. [CBK12] tackle the problem in the
dual space and search for a set of dual loops which separate all sin-
gularities. While the dual setting allows for relatively simple con-
ditions guaranteeing a valid primal layout it does not allow explicit
control over the geometric quality of the implied separatrices.

Mesh as Layout. An alternative approach to create coarse quad
layouts is to use a generic quad mesh generation method (without
explicit layout considerations) and aim for a mesh with very large
elements – which can then be considered a coarse layout. While
some of these methods are robust enough to operate reliably under
this extreme requirement (e.g. [BCE∗13, CBK15]), it is typically
difficult for these methods to control the quality of the resulting
layout under these circumstances (cf. Section 7.1).

3. T-Mesh Construction

A motorcycle graph is a cell decomposition of a surface [EGKT08].
Campen et al. [CBK15, MC19] show how a rectangular partition
of a surface can be constructed by tracing motorcycles starting at
singularities along the iso-lines of a seamless parametrization. The
resulting T-mesh T = (N ,A,P) consists of nodes N for every
singularity and intersection of traces, arcs A consisting of the seg-
ments of a trace between two nodes, and patches P representing
rectangular regions bounded by arcs.

Such a motorcycle graph forms the basis of our quantization
(cf. Section 4) which assigns integer lengths to the arcs and thereby
defines the connectivty of the resulting layout.

We adopt a construction similar to [CBK15], with one important
difference: in our case motorcycles may survive a crash with an
existing trace and continue driving. In such a case a regular valence
4 node is formed at the intersection. Before defining the criterion
that determines this, we establish a few definitions and notation.

Notation. Given two traces ti and t j starting in singularities
i and j, respectively, we refer to the node created at their
intersection as ni j ∈ N . (For simplicity of no-
tation we ignore the fact that two traces may in-
tersect more than once; it will be clear from the
context which intersection node is referred to.)
We define Si j ⊂ A as the set of arcs between
the start of trace ti and node ni j, and li j ∈R as
the total parametric length of those arcs. The two arc sets Si j and
S ji form the legs of a right triangle. Let αi j ∈ (− π

2 ,
π

2 ) be the signed
(ccw) angle of that triangle at the start of trace ti.

We further give a dedicated name, ni∗, per trace ti to the
intersection closest to the origin of ti which satisfies
li∗ > l∗i, i.e. the first intersection of ti with a trace that
starts inside the π/2-sector (blue) around ti (see inset).
In the classical motorcycle graph a trace ti would stop
exactly at ni∗. By contrast, we keep on tracing and only
stop based on the following criterion.

Stopping Criterion. Given a user defined angular bound α, a trace
is stopped as soon as it intersected two traces tk and tl such that

Figure 2: T-meshes on the BUNNY model created for angle devia-
tion bound α = 5◦,15◦,35◦, respectively.

αik ∈ [0,α] and αil ∈ [−α,0], i.e., as soon as on
both sides of trace ti a trace is found such that
the formed triangles are contained in the sector of
half-angle α around ti. With this stopping crite-
rion we ensure that we reach the traces of at least
one singularity on each side of the trace which, intuitively, could be
connected to singularity i by a separatrix which respects the maxi-
mum angular deviation bound. We will see in detail in Section 4.3
how this construction helps to guarantee a maximum separatrix de-
viation. Figure 2 shows a few examples of the resulting T-meshes
for different α and how tighter bounds lead to longer traces.

4. Quantization

A quantization of a T-mesh is an assignment of a non-negative in-
teger qi to every arc ai ∈ A. These values are to be interpreted
as parametric length specification for the arcs, virtually overrid-
ing their length in the input parametrization. Since every arc is
associated with a parametric iso-line, the quantization implies an
assignment of integer parametric distances between singularities
[CBK15]. These distances can be used as constraints for a global
re-parametrization of the surface where every singularity is located
on an integer position, enabling the extraction of a quad mesh
[CBK15, LCBK19]. This quad mesh’s base complex defines a quad
layout. The edges of the base complex – the separatrices – connect
singularities that lie on the same parametric iso-line. Effectively,
the quantization implies which singularities are connected by sepa-
ratrices by assigning zero lengths to certain arcs. Depending on the
T-mesh structure and the quantization, singularities may be con-
nected by separatrices corresponding to different parametric direc-
tions (cf. Figure 3(left, middle)) or not (cf. Figure 3(right)).

While the above previous works aim to find a quantization which
approximates the arcs’ original parametric lengths, we detail in this
section how we instead find a quantization that promotes a coarse
quad layout. We begin by discussing two important properties of a
quantization – validity and consistency – in the following section.
We continue by presenting a sufficient condition which guarantees
validity, and finally describe which additional constraints we set up
to enforce a high quality quad layout.

4.1. Consistency and Validity

In order to compute a valid (locally injective, fold-over free) para-
metrization that adheres to the singularity distance constraints de-
fined by the quantization, two properties need to be fulfilled. The
quantization needs to be consistent and valid [CBK15].
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Figure 3: Layouts resulting from different quantizations. Singular-
ities (dots) are separated in vertical direction leading to an angle
a > p=4 compared to the desired direction (left). With our separa-
tion constraint, singularities are separated in the direction corre-
sponding to the larger difference in the seamless parametrization
always leading to separatrix angles smaller thanp=4 (middle). If
both separatrices form an unacceptably large angle, singularities
need to be separated in both directions (right). Note that the ac-
tual quantization (beyond zero vs non-zero) is less important for
the layout, consisting of the (bold) edges of the base complex only.

A quantization isconsistentif pairs of opposite sides of each T-
mesh patch are quantized to the same length. This property ensures
that all patches remain rectangular in the parametric domain.

A quantization isvalid if the distance between any two singu-
larities is strictly positive, such that they do not collapse parametri-
cally. In terms of the quantization this means there must be no arc
path with total quantized length of 0 between any two singularities.

Let di j 2 R2 be the(u;v)-difference between singularitiesi and j
measured in the seamless parametrization (in some path homotopy
class) andqi j 2 Z 2 be the quantized difference vector. W.l.o.g. as-
sume thatdu

i j > 0 andjdu
i j j � j dv

i j j. To ensure validity it is suf�cient
to requirequ

i j > 0 _ qv
i j 6= 0 [CBK15]. We propose to use instead

the simpler suf�cient condition ofqu
i j > 0, i.e. singularities are sep-

arated by the quantization in the dominant separation direction in
the input parametrization. While this condition is stricter, what we
effectively exclude are quantizations withqu

i j = 0 andqv
i j 6= 0 (Fig-

ure 3 left); thereby we already ensure a maximal separatrix devi-
ation of p=4. Even more practically relevant, this disjunction-less
condition is easier to formulate and more ef�cient to handle.

Campen et al. propose for their iterative quantization improve-
ment to test validity after each change by explicitly searching sin-
gularity connecting arc paths with quantized length of zero. In the
worst case this test is inO(n2) and in general not easily applicable
in the context of solving an integer linear program. In the following
section we present how separation of singularities can be guaran-
teed using only one linear constraint per trace.

4.2. Singularity Separation

To guarantee the separation of singularities in the quantization we
propose a simple criterion based on the following lemma:
Lemma 1. If for every trace ti one of the arcs in Si� is quantized
to at least 1, the quantization is valid.

Here,Si� is the set of arcs between the start ofti andni� , i.e. the
�rst intersection ofti with an earlier trace (cf. Section 3).

Proof. We show that every singularity in thep=2-sector centered
at a singularityi and around the positiveu direction is separated
from i. The same argument then trivially holds for all other para-
metric directions as well.

Let j be the singularity at the start oft� . Then,j is separated from
i in u direction by at least 1 according to the lemma's premise. Con-
sider another singularityk within the
p=2-sector and its tracetk in negative
(or positive)v direction towardsti . If
tk intersects the parametric iso-line of
ti it must do so further away thant�
sincet� is the intersection closest to
i by de�nition. Since the intersection
lies behind that oft� , k is separated by at least 1 inu direction
as well. If, on the other hand, the trace ofk does not intersect the
parametric iso-line ofti it must have been stopped before reaching
it. Since at least one of the arcs oftk is quantized to at least one
according to the condition in the lemma,k is separated fromi in
positive (or negative)v direction.

Note that Lemma 1 does not depend on our special T-mesh con-
struction and also holds if traces stop at the �rst intersection.

We conclude that it is suf�cient to require one arc ofSi� to be
quantized to a strictly positive number for each traceti to ensure
validity, i.e., one constraint per trace is suf�cient.

4.3. Layout Constraints

In the previous section we detailed how simple constraints on the
minimal quantization of certain arcs guarantee a valid quantization.
Computing the smallest quantization adhering to these constraints
results in a coarse quad layout. However, the separatrices of that
layout may deviate up top=4 from the directions of the seamless
parametrization (cf. Figure 3 b). In particular the separatrix corre-
sponding to a traceti will connect to the �rst singularity within the
p=2-sector which is not separated in the direction orthogonal toti .
We propose a simple solution to create layouts in which the separa-
trices do not deviate from the intended directions more than a user
speci�ed maximum ofa by enforcing the additional separation of
offending singularities in orthogonal direction (cf. Figure 3 c).

Given two intersecting tracesti andt j with l i j � l ji originating
from singularitesi and j, we de�ned in the previous sections con-
straints that ensure the arc setSi j is quantized to at least 1, sepa-
rating i and j in the direction ofti . If Sji will be quantized to 0,i
and j would lie on the same iso-parameter line and would therefore
be connected by a separatrix (unless there is a singularity closer
to i which also lies on the same iso-parameter line). If angleja i j j
of this separatrix is larger than the user de�ned bounda we need
to prevent such a quantization. By additionally separatingj in the
direction oft j it is ensured that the corresponding separatrix is not
formed. We therefore include the additional constraint thatSji is
quantized to at least 1 for every pair of intersecting tracesti andt j
with ja i j j > a.

In the light of this, we can now explain the rationale behind
our choice of stopping criterion in the T-mesh construction, con-
tinuing a traceti until at least two tracestk andtl are intersected
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with a ik 2 [0;a] and a il 2 [� a;0] (cf. Section 3). We want to
guarantee that all separatrix deviations are below the user de-
�ned bound. With the constraints above, any separatrix created be-
tween singularities whose traces intersect ful�lls this. But what if
the quantization implies none of them, i.e.Sji is quantized to at
least 1 for all tracest j that intersectti , which may be necessary
due to a combination of separation and consistency constraints?
In that case the separatrix will lie in
the corridor (blue) between the two
potential separatrices connecting the
start ofti to the starts oftk or tl . Since
both these potential separatrices sat-
isfy the bound, the actually implied separatrix (blue dotted line)
lying in between satis�es it as well.

4.4. Feature Lines & Boundaries

Some models contain sharp creases for which it is typically desir-
able that they are represented by arcs in a layout. Similarly, bound-
aries of models should be represented by arcs. Both these cases,
as well as arbitrary, user de�ned feature curves are supported by
our method by aligning the parametrization with these features and
tracing them with motorcycles to integrate them into our T-mesh
[CBK15]. To ensure that the traced separatrix is not diverted to-
wards another singularity away from the feature curve it is enough
to simply add layout constraints (cf. Section 4.3) forall intersecting
traces. This can be interpreted as prescribing a maximum separatrix
deviation ofa = 0 for all traces that follow a feature curve. Figure 9
shows examples where boundary alignment is enforced this way.

5. Integer Linear Program

We established how a quantization can be constrained such that
no separatrix in the implied quad layout deviates more than a user
given bound from the intended direction. In the space of feasi-
ble quantizations respecting these constraints, we are looking for
a quad layout as coarse as possible. In this section we discuss how
such a quantization can be found ef�ciently by solving an integer
linear program (ILP). We �rst describe the basic integer linear pro-
gram, which can be constructed in a straightforward fashion follow-
ing the previous discussion. After that we discuss how the program
size can be reduced for better performance of the solver.

5.1. De�nition

Our ILP uses one integer variableqi 2 Z for every arcai 2 A which
represents the quantization of this arc. Every arcai 2 A requires a
non-negative quantization:

qi � 0 (1)

For consistency (cf. Section 4.1) we add the following constraint
(analogous to previous work on consistent interval assignment for
non-conforming partitions [CBK15, ULP� 15]) for each pair of arc
setsSandSo which make up two opposite sides of a patch:

å
ai2 S

qi � å
a j 2 So

q j = 0 (2)

To ensure validity we add the following validity constraints
which ensure that for each traceti one of its arcs between its origin
and the �rst intersectionni� with a trace starting in thep=2-sector
aroundti is quantized to at least 1 (cf. Section 4.2 ):

å
ak2 Si�

qk � 1 8 tracesti (3)

The layout constraints of Section 4.3 have a very similar form
but are created for every intersection of two arcs forming a triangle
with angles larger thana to prevent the creation of separatrices with
excessive deviation:

å
ak2 Sji

qk � 1 8 ni j with
l ji

l i j
> tana (4)

Finally, to promote layout coarseness, we de�ne the objective to
be minimized as

E = å
ai2A

l?i � qi ! min (5)

wherel?i is half the parametric distance between
the two arcs opposite of arcai (or half the para-
metric distance between the one opposite arc and
ai itself if ai is boundary). Since the quantization
of an arc speci�es the number of quad strips that
pass through this arc orthogonally (in the quad mesh implied by
the quantized parametrization), this energy corresponds to the total
length of the layout's quad strips.

An integer linear program is feasible if an assignment of vari-
ables exists such that all constraints are satis�ed. Campen et
al. [CBK15] show that a consistent quantization always exists in
which all arcs are quantized to at least 1. Such a baseline quantiza-
tion trivially ful�lls all our constraints.

5.2. ILP Size

The size of the integer linear program described in the previous
section depends largely on the size of the constructed T-mesh. For
every arc there is one integer variable representing its quantized
length (1), for every patch there are two consistency constraints (2),
every trace adds a validity constraint (3), and for every node created

Figure 4: On theBUNNY mesh with 192 traces the number of arcs
quickly grows for decreasinga values to 189k ata = 0:25� but the
number of integer variables remains around 252 (left). Since motor-
cycles need to be traced further and the resulting T-mesh consists
of more elements for decreasinga, timings go up for both T-mesh
construction and setup of the ILP (to 2.9 s and 0.4 s, respectively, at
a = 0:25� ) but the time to solve the problem remains around 0.03 s.
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