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Figure 1: Our method takes a noisy feature curve network (FCN) as input and produces a completed and denoised output FCN. This is

done by performing co-occurrence analysis on the feature curves with which we identify corresponding curves and omit noise. Reoccurring

groups are merged into a template, which is used for co-completion of the network. In the completed network, dark blue curves indicate

the reoccurring templates, while strong (non-reoccurring) curves are visualized in light blue. The example shown above is computed on an

excerpt of a scan of a gothic cathedral.

Abstract

Feature curves on 3D shapes provide important hints about significant parts of the geometry and reveal their underlying struc-

ture. However, when we process real world data, automatically detected feature curves are affected by measurement uncertainty,

missing data, and sampling resolution, leading to noisy, fragmented, and incomplete feature curve networks. These artifacts

make further processing unreliable. In this paper we analyze the global co-occurrence information in noisy feature curve net-

works to fill in missing data and suppress weakly supported feature curves. For this we propose an unsupervised approach

to find meaningful structure within the incomplete data by detecting multiple occurrences of feature curve configurations (co-

occurrence analysis). We cluster and merge these into feature curve templates, which we leverage to identify strongly supported

feature curve segments as well as to complete missing data in the feature curve network. In the presence of significant noise,

previous approaches had to resort to user input, while our method performs fully automatic feature curve co-completion. Find-

ing feature reoccurrences however, is challenging since naïve feature curve comparison fails in this setting due to fragmentation

and partial overlaps of curve segments. To tackle this problem we propose a robust method for partial curve matching. This

provides us with the means to apply symmetry detection methods to identify co-occurring configurations. Finally, Bayesian

model selection enables us to detect and group re-occurrences that describe the data well and with low redundancy.

CCS Concepts

•Computing methodologies → Shape Analysis;

1. Introduction

The detection of meaningful feature curve networks (FCNs,
cf. Section 4) on surfaces has a wide range of applications. They
can be used to guide low level geometry processing tasks like

remeshing as well as facilitate high level abstractions. For man-
made shapes, which consist mostly of smooth and planar regions
bounded by discontinuities, a meaningful FCN can be found by
simply tracing out these discontinuities and high curvature regions.
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The development and availability of 3D scanners allows captur-
ing of real world data, which is under the influence of noise and
measurement uncertainty. Furthermore, it can occur that parts of
the geometry are not visible from a given scan position, leading to
partially missing data. FCNs containing meaningful feature curves
would greatly benefit the processing and analysis of geometric data
acquired from the real world. However, the automatic generation
of FCNs commonly only relies on local information. Hence the re-
sulting feature curves can be prone to noise, incomplete, and frag-
mented. A common (local) denoising technique is to smooth the
surface or threshold the feature curves according to their curvature.
This also removes weak feature curves, which can be essential to
describe the surface. Furthermore, this method does not complete
fragmented or missing segments. In this paper we use the global co-
occurrence information of feature curve groups to suppress noisy
weak features and complete missing data in the FCN.

Feature curve configurations that reappear multiple times have
a high probability of being meaningful, and are less likely due
to noise. By detecting co-occurring groups of curves this global
feature information can be used to identify relevant curves and
complete the FCN. This task is especially challenging due to vari-
ous sources of measurement and data uncertainty. Due to this un-
certainty previous work in the field [SJW∗11, BWM∗11] rely on
user input (e.g. user specified curve templates, or point correspon-
dences) in the presence of noise.

In this paper we present a fully automatic approach to feature
curve co-completion in noisy data. By globally identifying reap-
pearing feature curve configurations we are able to consolidate
these co-occurrences to a completed feature curve template. A tem-
plate which describes multiple reoccurrences of the same feature
curves provides us with the means to complete the feature curve in-
formation as well as neglect sporadic short and weak features which
are not observed multiple times. Furthermore, we obtain high level
shape information to describe and abstract the geometry.

1.1. Contributions

Our contributions can be summarized as follows:

• We present a novel unsupervised approach to extract templates
of reoccurring feature curve configurations on given surfaces.
(Together with their generating transformations these templates
abstract the given shape.)

• To compare feature curves we have developed a new method to
match feature curve sub-segments robustly.

• We use the feature curve templates to complete FCNs under the
influence of noise. These networks can be used for further pro-
cessing tasks.

The rest of this paper is organized as follows: In Section 2 we sum-
marize related work in the field. Section 3 describes an overview
over the template generation process, while Section 4 and 5 give the
mathematical and implementational details. In Section 6 we show
results of the co-occurrence analysis and the FCN completion.

2. Related Work

Feature Curve Detection There exist various possibilities for the
generation of FCNs. Several view dependent contour detection ap-

proaches were proposed that extract aesthetic curves on a shape
based on a certain viewing position (e.g. [ZHX∗11,KST09,KST08,
DFRS03]). However, to utilize the curves in downstream appli-
cations a view independent feature detection method is usually
preferable, if the geometry is not fixed to one viewing position.
E.g. feature curves can be extracted as patch boundaries from a seg-
mentation (for example [NSP10, WG09, CSAD04]). These patch
layouts usually do not trace out weak features and might not re-
sult in a detailed FCN. In this case a different line of research,
which traces ridges and ravines of the surface can be used (e.g.
[HPW05,YBS05,CP05,OBS04,MF10,WB01,BPK98]). The traced
curves can capture up to very small details, but can also identify
high frequency noise as false positives or stop the tracing of a fea-
ture curve if its principal direction is unclear. Hence, using these
approaches in the presence of noise and data uncertainty leads to in-
accurate and fragmented FCNs, which are not useful to further pro-
cess the geometry. The shortcomings of both patch-based methods
and feature curve tracing approaches are summarized in [CIE∗16].
However, especially for noisy data further processing of the ge-
ometry is relevant. Since the ridge/valley approaches detect weak
as well as strong features we use these as input to our system to
identify meaningful curves in the network by co-occurrence anal-
ysis and complete the fragmented networks with detailed curve
templates. A clean FCN is especially useful for applications that
rely on feature curves as an input for, e.g, segmentation [ZDCJ17],
simplification [GLK16], shape matching [GBK16], or remeshing
[ECBK14, LHJ∗14].

Symmetry Detection Several approaches to symmetry detection
have been proposed over the last decade. It is out of scope of this
paper to present all of these and we refer the interested reader to
[MPWC13]. Here, we only describe the most related approaches.

Symmetry detection based on transformation space clustering
was proposed in [MGP06,PMW∗08,SAD∗16]. In these approaches
the co-occurring parts are detected in a three step procedure. First,
similar point pairs (according to a point signature) are detected and
a transformation between each pair of points is computed. In a sec-
ond step these transformations are cast into a voting space, where
clusters of transformations are sought. If several points are trans-
formed by the same transformation it is likely that this transforma-
tion describes the re-occurrence of the same geometric entity. Some
methods detect whether the extracted transformations align on a
grid (cf. [PMW∗08,SAD∗16]) in a third step, which allows them to
find orbits of multiple occurrences. These approaches strongly rely
on the quality of the initial point matches. In the presence of noise
local point signatures tend to be inexact, hence the search space can
become very large and the false-positive rate in the set of point cor-
respondences increases. This makes it hard to find structure in such
a transformation space. Feature curve segments trace out significant
ridges/ravines of the geometry and thus provide information on an
intermediate (more global) level. We propose a robust partial curve
matching technique (cf Section 4.1.1), which avoids the computa-
tion of unreliable point signatures and is thus more robust to noise.
Robust feature curve matching allows to decrease the false positive
rate of potential matches and simplifies the identification of reoc-
curring instances of the same geometry. Furthermore, considering
only the points that lie on the feature curves of a shape greatly re-

c© 2018 The Author(s)

Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



A. Gehre, I. Lim, L. Kobbelt / Feature Curve Co-Completion in Noisy Data

Model Generation

Feature Curve Matching

Cluster Transformations

Orbit Detection

Model Selection

Bayesian Model Selection

Group Curves

Feature Curve Network

Feature Curve 

Templates

Figure 2: System overview. We generate templates of feature curves

in a two step procedure. In the model generation step we detect co-

occurring groups of feature curves. In the model selection step, we

select the set of transformations that generates the geometry and

group the curves based on these transformations.

duces the complexity of the search space. Similar to Pauly et al. we
propose a three-step procedure to analyze the transformation space
of feature curves to identify co-occurring curve configurations.

Feature Curve Based Symmetry Detection Feature line based
symmetry detection has been investigated in [BBW∗09]. Bokeloh
et al. use a subsampling of a set of strong feature curves, in a
RANSAC-based pattern matching approach. However, their ap-
proach requires a preprocessing of the feature curves by neglecting
weak features and generating longer connected segments. Initial
matches are found by greedily grouping close feature curves which
poses assumptions the curve distribution on the surface. In a setting
with noise it is hard to separate groups curves by distance.
Berner et al. [BWM∗11] detect subspace symmetries by finding
linearly correlated parts in graphs of surface features and extract
correspondences in these that occur multiple times. Their method
relies on high curvature regions and discards matches that do not
have a matching graph topology. In the presence of noise a user has
to set the correspondences of the re-occurring feature points.
In our approach we postpone important decisions which feature
curves of the entire input curve set to keep/complete until we have
collected all the evidence. In contrast to pure symmetry detection
as it is done by [BBW∗09, BWM∗11] our objective is to complete
the FCN. For this it is crucial to identify reoccurring feature con-
figurations among weak and strong feature curves.
Ceylan et al. [Ceylan2016] use feature curve templates as input to
detect reoccurrences of variations of these in raw data. They point
out that it is very challenging to obtain curve templates automati-
cally from real world data. In our work we compute such templates
fully automatically on scanned noisy input, which can be used as
building blocks for such applications.

Feature Completion A semi-supervised approach for feature
completion has been presented in [SJW∗11]. Here a user draws
feature curve templates onto instances of the reoccurring geome-
try. The system automatically finds multiple reoccurrences of this
curve. In our work we automatically find groups of reoccurring fea-
ture curves, which allows us to compute feature curve templates
without any user input.

Li et al. have formulated an expectation maximization approach to
feature point completion in the context of co-occurrence analysis
[LWWS15]. In contrast, we generate templates for feature curves,
which can be used for further processing such as remeshing. This
is not possible using feature points directly.

3. System Overview

Our goal is to extract feature curve templates from a fragmented
FCN computed on noisy data. We construct such templates by iden-
tifying reoccuring features curves, which can then be grouped to-
gether. Due to the more global information encoded in a template,
we are able to complete noisy FCNs. In the following we give a sys-
tem overview of our approach. The co-occurrence analysis, which
is necessary for the template construction, consists of two main
steps (cf. Figure 2):

Model Generation: In the model gen-

eration phase sets of reappearing fea-
ture curves are identified, with the ob-
jective to find rigid transformations
that generate reoccurring parts of the
observed data. E.g. the image to the
right shows the feature curves of a re-
occurring rhomb. Several transforma-
tions (rightmost) can be used to explain
parts of the data. We define a sub-set of
such transformations as a model. How-
ever, real world data (e.g. acquired
from laser scans) underlies multiple
forms of data uncertainty and inaccu-
racy:

1. Geometric inaccuracy: The measured (real world) geometry is
not equal at each perceived re-occurrence.

2. Measurement uncertainty: The measurements can suffer from
noise.

3. Missing data/coverage: Depending on the scan position not all
parts of geometry are scanned equally.

4. Feature curve uncertainty: In a local setting it is hard to evaluate
whether a feature curve is merely noise or whether it represents
a meaningful part of an object.

These forms of uncertainty imply the following requirements:

1. Avoid over-reliance on local decisions: Local point descriptors
are unreliable in the presence of noise, which makes it hard to
find structure based on these (e.g. in the transformation space).
We find correspondences on a more global level by taking the
geometry of the feature curve into account.

2. Soft feature curve identification: We only leverage feature
curves with strong evidence (which are long or which have high
average curvature) for the model generation process. Note that
the entire noisy FCN is considered in the model selection step.

3. Partial feature curve matching: Correspondences between fea-
ture curve pairs need to be described as partial matches (Section
4.1.1), since feature curves are traced locally and can thus be
fragmented or overlap at different reoccurrences.
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4. Transformations clustering: To identify transformations that ap-
pear multiple times a cluster analysis is performed rather than
testing for strict equality.

As a final step of the model generation phase we detect orbits
in the transformation space (i.e. identifying whether subsets of
the reoccurring transformations can be described by a grid), as
in [PMW∗08, SAD∗16].

Model Selection: In the second
phase, the model selection, a de-
scriptive yet concise subset of these
transformations needs to be selected.
Since feature curves can be generated
by multiple transformations, the goal
is to extract a sparse subset of trans-
formations which describes the set of
reoccurring feature curves well. E.g. in
the example to the right the topmost
90◦ rotation around the blue rotation
center is selected, since it provides the least redundant description
of the data. The selected generating transformation can be used to
group the reoccurrences into one template (rightmost).

If we had perfect knowledge of the reoccurrences of feature
curves we would be able to evaluate measures as the minimum de-
scription length [Ris83] for model selection. However, we have to
identify which transformations describe the entire FCN containing
weak and noisy feature curves best. Therefore, we cannot simply
minimize the description length of a set of models. Instead we take
the inherent uncertainty in the data into account and assign soft
likelihood values to each feature curve, which describe how likely
it is that the feature curve has been generated by a given set of trans-
formations (model). With Bayesian model selection (Section 4.2.1)
we are able to identify a concise and descriptive set of models.

We use the generated templates to
complete the feature curve informa-
tion, by applying the inverse transfor-
mation and inserting the feature tem-
plate at every location where a reoccurrence was observed.

4. Cooccurence Analysis

Given a shape S , a FCN F of S consists of a set of curves
C which lie on S . In a discrete setting these curves c ∈ C are
described by sequences of consecutive vertices v ∈ R

3, i.e. c =
(v0, . . . ,vk).

A rigid transformation T ∈ R
4×4 can be applied to a feature

curve c ∈ C by either transforming each vertex or a subset of the
vertices of the feature curve. A set of transformations that allows
the generation of the feature curve data from a sparse subset of the
initial FCN provides a good abstraction of the data. Hence our goal
is to find such a model M = {T0, . . . ,Tm} (i.e. a set of transforma-
tions) that is descriptive yet non-redundant.

4.1. Model Generation

The goal of the model generation step is to identify groups of simi-
lar feature curves that reoccur under the same rigid transformations

T0, . . . ,Tn. For this we first need to identify similar feature curves,
which will be described in Section 4.1.1. In a second step similar
transformations are grouped into clusters (cf. Section 4.1.2).

4.1.1. Partial Feature Curve Matching

Due to measurement and data uncertainty it is not possible to find
unique correspondences between entire feature curves. Since co-
occurring feature segments can overlap it is crucial to find partial
matches between curves. This is a challenging task, since we would
have to match all pairs of partial curves. To solve this problem we
present a novel "sub-string matching" technique to identify partial
matches between feature curve segments. Given a pair of feature
curves c0 ∈ C and c1 ∈ C this two-step procedure first computes
point correspondences between vertices on c0 and c1. In a second
step the partial matches are obtained from the point matches by
voting for the most likely transformation between c0 and c1.

Feature BLAST In the presence of noise local descriptors and re-
spective point matches can become unreliable. Therefore we ex-
ploit the more global information provided by the feature curve ge-
ometry to establish robust point- and partial curve matches. Hence,
we avoid the computation of unreliable descriptors in the presence
of noise. To obtain point correspondences between a point p0 on
c0 and p1 on c1 (i.e. points lying on feature curves, see image be-
low) we have developed a method which is based on a similar idea
as the Basic Local Alignment Search Tool (BLAST) [AGM∗90].
This method is used in genetics for DNA sequencing. Instead of
matching DNA strands we compute partial matches between fea-
ture curves. Algorithm 1 describes the steps of Feature BLAST.

c0 c1

p0
p1

l0

s0
s1

As an input we provide the mini-
mal match length l0 ∈ R (which is en-
coded by the green ellipsoid in the im-
age on the right) of two feature curve
sequences as well as two hysteresis
thresholds s ∈ R and t ∈ R, with
s < t. The lower threshold s evaluates
whether an initial match was found
(line 4 of Algorithm 1) by measuring
the distance of two feature line seg-
ments s0 and s1 that are traced from p0

and p1 with the minimal match length
l0. The distance function is evaluated
by translating p0 onto p1 and comput-
ing the best rotation between the two
point sets. A match is only found if
s is greater than the computed error.
While the distance value d is less than
the greater threshold t the length of the
match is extended by ∆l (third image
from the top) until either d exceeds t

(fourth image from the top) or the fea-
ture curve ends. In our experiments we
set the parameters l0 to 20− 30 times
the average edge length of the underlying triangle mesh, s to the av-
erage edge length, and t = 2 ·s. ∆l (cf. Algorithm 1) is set to 5 times
the average edge length. Note that we only use curves with strong
evidence in this step, which are longer than l0 times the average
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Algorithm 1 Feature BLAST

1: function FEATUREBLAST(l0, s, t, p0, p1)
2: l← l0
3: distance← DISTANCE(l0, p0, p1)
4: if distance < s then

5: while distance < t do

6: l← l +∆l

7: distance← DISTANCE(l, p0, p1)

8: return l · exp(−distance/(0.5 · t))

9: function DISTANCE(length, p0, p1)
10: s0← TRACECURVE(p0, c0, length)
11: s1← TRACECURVE(p1, c1, length)
12: st

0← s0− p0 + p1

13: R← ICP(st
0, s1)

14: return AVERAGEEUCLIDEANDISTANCE(R(st
0), s1)

edge length or have an average curvature along the curve which is
higher than the 0.5 ·C, where C denotes the average maximal abso-
lute curvature, averaged only along the feature curves.

As a result we receive point correspondences between the ver-
tices of the two feature curves with the respective match length as
well as an optimal rigid transformation and an affinity value (both
are used to vote for partial feature curve matches in the next step):

FEATUREBLAST(p0, p1) = l · e−
d

0.5·t

between the two points p0 and p1 associated with the curve seg-
ments s0 and s1. In our experiments we compute this value for all
pairs of points lying on the curves c0 and c1 and leverage these to
vote for an optimal transformation between c0 and c1.

Voting for Transformations To find an optimal transformation
for a pair of feature curves we exploit transformations between
the point correspondences found in the previous step by letting
the point correspondences vote for the best transformation. The 7-
dimensional voting space (3 dimensions for translations and 4 for
rotations in quaternion representation) is binned and the affinity
values of the point matches whose transformations fall in to the
same bin are summed up. In our experiments we use bin sizes of
2 times the average edge length of the underlying geometry for the
translations and 1.5◦ for rotations in unit quaternion representation.
We extract the maxima from the voting space as best transforma-
tions between two feature curves. Note that this second step is only
applied if a correspondence is detected in the previous step.

4.1.2. Cluster Transformations

Finally, to find reoccurrences of similar transformations we need
to cluster the transformations that derive from the previous step
(global voting) over all pairs of feature curves. We use a hierarchi-
cal clustering approach where we stop clustering when the distance
of the next element is larger than a predefined maximal error of the
transformations (we use 2 times the average edge length of the un-
derlying geometry for the translations and an angle of 1.5◦ between
the unit quaternion representation of the rotations in our examples).

If these reoccurring transformations can be described by a regu-
lar grid we can find multiple reoccurrences of the same geometric

entity, which are described by a generating transformation. In order
to detect these orbits we apply the method presented in [PMW∗08].

4.2. Model Selection

In the previous step we have extracted a set of reoccurring trans-
formations T = {T0, . . . ,Tn} from the data. The model we select
in this step is represented by a subset of T . Due to the different
sources of uncertainty in the data (the feature curves) we can mere
assign soft liklihood values based on the observed evidence. In this
probablistic setting Bayesian model selection allows to identify the
model that maximizes the support for the data. In Section 4.2.1 we
will explain how Bayesian model selection can be used to choose
a descriptive model. However, the amount of possible models that
can be used to abstract the data is given by the powerset of T . It
is infeasible to compute and compare all of these models. We will
present an effective heuristic to select the best model in Section
4.2.2. In Section 5.2 we describe how feature curves are grouped to
a single feature curve template per generating transformation.

4.2.1. Bayesian Model Selection

Given a set of models M = {M0, . . .Mk} that describe the data
C = {c0, . . . ,cm} (the entire noisy FCN), we are able to choose a
model that describes the data well while providing low redundancy
based on Bayesian model selection. The output of this model selec-
tion step is a model Mi = {T

i
0 , . . .T

i
q} that assigns a transformation

to each reoccurring feature curve and neglects the curves that are
not supported by Mi. According to Bayes’ rule the probability of a
model given the data can be computed as

P(Mi|C) =
P(C|Mi) ·P(Mi)

P(C)
.

Since we can assume that the data is measured independently
we can regard each data observation independently and compute
P(Mi|C) as

P(Mi|c0, . . . ,cm) =
∏

m
k=0 P(ck|Mi) ·P(Mi)

∏
m
k=0 P(ck)

.

The Bayes ratio can be used to compare two models [KR93]. It is
especially useful since the term in the denominator is constant and
thus factored out. The Bayes ratio is computed by

K =
P(Mi|C)

P(M j|C)
=

P(C|Mi) ·P(Mi)

P(C|M j) ·P(M j)
.

A value of K > 1 means that the model Mi has stronger support
for the data than M j. According to [Jef98, KR95] K gives insights
on the weight of evidence to select one model over the other. Fol-
lowing their scheme a value of K > 10 strongly supports the model
Mi over M j, while a value close to 1 means that the models have a
similar descriptive power.

To evaluate the Bayes ratio we assume a uniform distribution
as prior P(M) (all models are equally likely). We describe the
likelihood values of the feature curves given a model Mi, i.e.
P(ck|Mi) by testing whether the feature curve ck was generated
from other feature curves in C by applying one of the transfor-
mations T i

j ∈ Mi. Therefor we apply the inverse transformation

(T i
j )
−1 for all T i

j ∈Mi to the points pck that compose the curve ck
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(1)

(2)

(3)

(4)

Figure 3: Scan of a museum (left) and a townhall (right), with (1) the initial dense feature network generated with [YBS05]. (2) shows the

completed FCN. (3) depicts the connected components. (4) shows the feature curve groups that fall into the same template. Dark blue curves

indicate the reoccurring templates, while strong (non-reoccurring) curves are visualized in light blue.

(pTr
ck
= (T i

j )
−1 · pck ). Then we compute the average Feature BLAST

affinity value a(T i
j ,ck) over the vertices of the feature curve (as de-

scribed in Section 4.1.1 only that the transformation is given by
(T i

j )
−1). The corresponding feature curve for the BLAST match-

ing is found as the feature curve on which the nearest neighbor pnn
ck

of pTr
ck

lies. In case the transformation describes a grid we sum up
the average affinity values for all reoccurrences.

We add Tnull to each model, which encodes that a feature curve

was not generated by any of the given transformations, and set

a(Tnull,ck) = l0 · exp
(

−
t

0.5 · t

)

= l0 · e
−2,

which is the smallest possible affinity value if the minimum match
length l0 is met. The likelihood of feature curve ck given the model
Mi is then computed as

P(ck|Mi) = max
T i

j∈Mi

a(T i
j ,ck). (1)

For numerical stability all computations are performed in log-
space.
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Note that after model selection point correspondences on the re-
occurring curve instances are automatically given by the associa-
tion of pck and pnn

ck
. In case the curves on which pck and the reoc-

currences pnn
ck

lie are assigned to the same transformation and the
corresponding BLAST score exceeds the matching threshold s the
points pnn

ck
are considered as reoccurrences of pck .

4.2.2. Heuristic Model Selection

Since it is infeasible to compare all possible models (2|T | many),
we propose a heuristic to neglect redundant transformations. We
start with the model that holds the entire set of transformations,
i.e. M0 = T and recursively remove transformations from this set
until the Bayes ratio between the models Mi and Mi+1 shows strong
support for the model Mi (i.e. K > 10). We greedily remove the
transformation with least support for the data (i.e. with minimal
P(C|M) ·P(M)). Note that Tnull is excluded from this removal. If
K > 10 after removing a transformation we know that the model
Mi was of significance. Hence, we can find a descriptive model
(w.r.t. the definition of [Jef98, KR95]) with Mi after at most |T |
iterations (since one transformation is removed in each iteration),
i.e. after at most |T |2 computations of the Bayes ratio.

5. Feature Curve Co-Completion

In the final FCN feature curve classification noise is discarded (Sec-
tion 5.1) and reoccurring groups of feature curves are grouped into
templates, which are completed based on their co-occurrence infor-
mation (Section 5.2). The Bayesian model selection results in a set
of transformations Mi = {T

i
0 , . . . ,T

i
q ,Tnull} with an assignment of

each feature curve c to one of the transformations Tc in Mi. Tc is
selected as argmax for equation (1). The mapping BTc∈Mi

: C→C

is then defined between pairs of feature curves under the selected
transformation.

5.1. Feature Curve Classification Noise Removal

Curves that are asigned to the model Tnull do not reoccur with re-
spect to one of the transformations in the selected model Mi. Hence,
we assume that weak non-reoccurring curves were classified as
false postives by the feature detection method. These are removed
from the network. Only siginficant curves are retained. For these
non-reoccurring curves we set a high threshold so that no classi-
fication noise is added (curves that are longer than 3 · l0 times the
average edge length or have an average curvature higher than C and
are longer than l0 times the average edge length). In our results we
indicate these curves in light blue.

5.2. Template Generation

The remaining curves correspond with respect to one of the trans-
formations T i

0 , . . . ,T
i

q . These are grouped into templates, which are

extracted for each of the transformations T i
0 , . . . ,T

i
q separately.

Connected Component Computation First, all feature curves
that belong to the same component are identified. We define a
graph G = {C,E}, where C represents the set of feature curves (the
nodes) and E = {(c,BTc

(c))|c ∈C} the set of undirected edges. In

this graph nodes are connected by an edge if and only if their cor-
responding curves are mapped onto each other by the transforma-
tion T , i.e. if point-correspondences exist on the respective curves
(cf. Section 4.2.1). Hence, the connected components of this graph
represent reoccurrences of the same feature curve. We show the
connected components as third image of our results in Figures 1,
3-6, and 8. Note, that these (exact) feature curve correspondences
with point-to-point reoccurrence information are essential for the
FCN completion step (otherwise it would be hard to separate and
complete close curves individually).

Connected Component Completion To compute the templates
we overlay the reoccurrences of each connected component by ap-
plying the inverse transformation. To consolidate the curves (i.e. se-
lect one alternative of the multiple reoccurrences) we implement
a shortest path search on the possible (reoccurring) paths through
the FCN. Note that for this step the identification of correspond-
ing feature curve segments is crucial (i.e. previous symmetry de-
tection methods do not provide this information). Only those seg-
ments where point-correspondences on other instances exist are
considered in the graph. To identify alternative paths we project the
end-points of the same connected components onto their nearest
neighbors of the re-occurrences in an ε-radius. The new start- and
end-points of this network are all vertices that are projected to end-
points only (not onto an intermediate point of the feature curve). In
this network we iteratively find the longest shortest path from one
start-point to an end-point and remove all redundant paths.

Grid Origin Computation Different connected components that
are assigned to the same transformation and are seeded at the
same origin should be grouped into one template. The transforma-
tions alone do not provide information on where detected grids are
seeded. In the following we describe a method to locate the origins
by using the curve information only.

In case we have detected a grid in the orbit detection a seed point
for the grid needs to be found. To find this point we project the fea-
ture curves belonging to the same connected component onto their
generators. In case the grid is spanned by two translation vectors
g0 and g1 and these are perfectly orthogonal we can simply project
onto g0 and g1. Otherwise, the we need to account for the shear and
compute two projection directions ḡ0 and ḡ1:

n = g0n
×g1n

g
⊥
0 = g1n

×n

ḡ0 = 〈g0,g
⊥
0 〉 ·g

⊥
0

where gin are the normalized generators, × denotes the cross prod-
uct and 〈·, ·〉 the dot product between the respective vectors. The
same computation can be performed for ḡ1. In case the generator is
a rotation angle we project the feature lines onto a circle around the
respective center of rotation. The projection directions (or circle)
are binned and the amount of projected curves is stored in these
bins. The optimal offset for the grid with generator g is found by
computing the minimal value for the offset index z:

min
z

k

∑
i=0

binentry(z+ i· ‖ g ‖)
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Figure 4: Scan of a manor house, with the initial dense FCN gen-

erated with [YBS05] (top). The bottom row shows the connected

components in the same color. Note, that we are able to detect cor-

responding feature curves even though these are very jaggy given

the high amount of noise in the data.

Connected components that fall into the same grid are then grouped
together into one template. Furthermore, this allows us to identify
gaps in the grids, which are detected if at least two neighboring grid
positions contain no evidence of the curve template. At these points
we split the grid for the template extraction. In the fourth images
of Figures 1 and 5 we encode the curves that were assigned to the
same template with the same color. The final templates are obtained
by transforming the completed connected components that are as-
signed to the same template into a common grid cell with respect
to the defined grid origin.

For the resulting FCN we transform the computed templates to
each position where we have measured an occurrence of the respec-
tive template. In addition strong non-reoccurring curves are added
to the network as described in Section 5.1.

6. Results

In the following we will show re-
sults of the co-occurrence analysis
and the feature curve completion.
Figure 4 depicts the output of the co-
occurrence analysis on a scanned ob-
ject with high amount of noise. The
colors encode the connected compo-
nents of the feature curves. Note, that
although the input feature curves are
very dense and noisy we are able to
identify reoccurrences of the same
curve configurations.

Feature Curve Co-Completion

Figures 1, 3, 5, and 8 (1) show the
dense input feature curves. Note that
all FCNs are generated on noisy
point cloud data. The initial curves
are generated automatically with the
method presented in [YBS05]. (2) visualizes the completed FCNs.
To complete the network we insert the extracted templates at
each detected reoccurrence (dark blue) as well as strong features,
which were not detected as part of the reoccurring configurations
(light blue) into the network. (3) shows the connected components

Noise distance co-occurring curves (ours) all curves no curves

0.05% Hausdorff 7.96 ·10−37.96 ·10−37.96 ·10−3 1.83 ·10−2 1.64 ·10−2

0.05% average 4.92 ·10−44.92 ·10−44.92 ·10−4 7.79 ·10−4 8.31 ·10−4

0.1% Hausdorff 1.49 ·10−21.49 ·10−21.49 ·10−2 1.78 ·10−2 1.50 ·10−2

0.1% average 5.47 ·10−45.47 ·10−45.47 ·10−4 8.03 ·10−4 1.05 ·10−3

Table 1: Hausdorff- and average distance values for smoothing ex-

periment. We apply feature preserving C1 smoothing (100 itera-

tions) to the meshes in Figure 6, by retaining points on the curves

detected by our method (3rd column) and the initial curves (4th col-

umn) and compare these to unconstrained smoothing (5th column).

The bounding box diagonal has length 1.

(described in Section 5.2). Figures 1 and 5 (4) depict the groups
which where assigned to the same grid position. In Figures 3 and
8 (4) we encode the feature curves that are grouped into the same
template in the same color.

With our method we are able to identify co-occurring configu-
rations of feature curves and use this information to complete the
FCNs. E.g. in the images above we show close-ups of the original
noisy and fragmented curves (left) of the models. Our approach is
able to complete significant curves and remove the noisy features
(right).

Noise For a synthetic example we show the effect of noise on
the feature curves and the resulting co-completion in Figure 6.
Gaussian noise with a standard deviation of 0.05% (middle) and
0.1% (right) of the length of the bounding box diagonal is added.
The initial feature curves are more jagged and fragmented com-
pared to the curves computed on the synthetic data. Nonethe-
less, we are able to detect most of the reoccurrences for these
noise levels (bottom row) and complete the network based on
these (middle row). However if the noise level increases the com-
pleted curve networks can also include jagged curves. To mea-
sure the effectiveness of our method we remove the artificial noise
by applying 100 iterations of feature preserving C1 smoothing
by retaining points on the completed FCN. Hausdorff- and aver-
age distances to the orginal data are given in Table 1. For com-
parison we show the results using all input curves and uncon-
strained smoothing. Using all input curves can have two effects.

our method

[BBW∗09]

First, the distance values are higher since
more displacement noise is preserved. Sec-
ond, in case of incomplete curve informa-
tion the geometry is smoothed, increasing
the distance to the original surface.

Comparison Co-occurrence Analysis We
compare our results to the feature line based
symmetry detection from [BBW∗09] in the
image on the right. Although we do not find
all reoccurrenes of the yellow windows we
are able to separate the components more
distinctly compared to [BBW∗09], which is
crutial for the templated extraction and the
completion of FCNs. Furthermore, we do
not perform any preprocessing and use the
input curves that are computed fully automatically with [YBS05].
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(1) (2) (3) (4)

Figure 5: Screwdriver (top) and scan of theater seats (bottom),

with the initial dense feature network generated with [YBS05] (1),

the FCN which was completed with our method (2), the connected

components (3), and the feature curve groups that fall into the same

orbit (4). Dark blue curves indicate the reoccurring templates,

while strong (non-reoccurring) curves are visualized in light blue.

We compare our method to symmetry detection with [MGP06]
in Figure 7 (right). With [MGP06] we find two translational (left
to right) reoccurences of the chairs (green and red). The heat ker-
nel signature [SOG09] is used as underlying descriptor for point
matching. Our method benefits from the connectivity of the feature
curves which allows to find connected components in each reoccur-
rence. Hence, our method detects all instances of the chairs and is
robust to noise. In contrast, local descriptors can become unreliable
under the influence of noise, which leads to a scattered transforma-
tion space in which it is hard to find meaningfull cluster centers.
For [MGP06] we measured a computation time of 1511.31s for the
point-signatures and 174.21s for the symmetry detection. With our
method it took 74.59s (cf. Table 2).

Furthermore, we compare our results to [BWM∗11] in Figure 8.
Berner et al. are able find reoccurring feature curve groups of the
windows of the church (purple lines) from the input FCN (yellow
lines). However, their input FCN only contains high curvature fea-
ture lines. This is sufficient to detect the co-occurences, but to com-
plete the FCN the identification of corresponding weaker curves
is crutial. The detection method relies on a similar topology of
the reoccurrences. In the presence of noise this cannot be ensured.
E.g. the topology of the pillars next to the windows varies (cf. Fig-
ure 8 (bottom row)), hence they are not included into the mapping.
In these cases a user has to define corresponding points in the re-
occurring instances. The feature curve input of our method can be
very dense, jagged, and noisy. However we analyze the entire FCN,
since this is relvant to include weak and strong feature curves into
the templates for completion. Nonetheless, we are able to find the
reoccurrences and extract templates fully automatically for the the
completion of the FCN.
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Figure 6: Noise test. Different levels of Gaussian noise with a stan-

dard deviation of 0.05% (middle) and 0.1% (right) of the bounding

box diagonal were added to the synthetic lotus-flower mesh (left).

The completed FCNs are depicted in the intermediate row. The bot-

tom row shows the connected components. Note that most reoc-

curences are detected even with a high amount of noise.

our method[SJW∗11]
Feature-Completion In the image on the
right we compare with the supervised fea-
ture line learning approach presented in
[SJW∗11]. The feature completion ap-
proach by Sunkel et al. requires a user to
draw the curve templates onto instances
of the geometry. In contrast our method
is unsupervised and finds the reoccurring
templates automatically. See Figure on the
right (right) for comparison.

Curvature Threshold A local method
to denoise feature curves is to threshold
these, e.g. based on their curvature. An ex-
ample is given in Figure 9, which shows an excerpt of the mu-
seum depicted in Figure 3. By increasing the curvature threshold,
the number of curves are reduced. Note that even in the example
with the highest curvature threshold (bottom left) not all noise is re-
moved, while relevant curves are missing. I.e. usually it is not pos-
sible to set one threshold for the entire geometry. With our method
(bottom right) relevant features are detected by co-occurrence. Ad-
ditionally, reoccurring groups are completed (e.g. the missing part
of the window on the bottom right).

Feature Curve Input In Figure 10 we demonstrate that the
method is flexible with respect to the FCN input. We compute three
different kinds of FCNs (for which the software is available on-
line): [YBS05], CGALs [CP05] implementation, and [OBS04] with
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our method [MGP06]

Figure 7: Comparison to symmetry detection with [MGP06]. Two

translational reoccurences (one in the front row and one in the

back row, both left to right, red and green colored geometry indi-

cate the two different translations) of the chairs have been detected

with the approach of [MGP06]. Our method benefits from the de-

tection of feature curve correspondences, which avoids the com-

putation of unreliable local point descriptors (the underlying de-

scriptor used for [MGP06] is the heat kernel signature [SOG09]).

Our method (left) detects and divides the six instances of the co-

occurring chairs exactly (each instance is indicated in a different

color). This is crucial for the definition of a feature curve template.

Model BLAST Clustering Orbits Model Selection
Windows Cathedral 83.40 0.01 0.14 3.72
Seats Theater 66.81 0.05 1.44 5.29
Screwdriver 40.75 0.02 2.08 9.84
Town Hall 7475.47 490.85 48.81 733.46
Manor House 18056.78 228.19 3.68 741.70
Museum 1924.36 1.73 2.23 682.56
Church 6126.55 8.65 2.62 5438.34

Table 2: Timings of the different steps of our algorithm in seconds.

Note that BLAST and Model Selection can be parallelized easily.

the curvature computation [Rus04]. In each example the reoccuring
window configurations are completed similarly.

Table 2 shows the runtimes of our algorithm. The results were
computed on a commodity notebook (Intel Core i7, 16 GB RAM).
Note that the Bayesian model selection as well as the computation
of the Feature BLAST are easily parallelized.

Limitations In cases with extreme noise levels where only very
small fragmented feature segments are traced our method will not
be able to detect structure, since we will have no evidence for the
model generation. I.e. BLAST will not find reliable matches such
that a transformation space clustering will not lead to reasonable
results. Furthermore, it can occur that a detected reoccurrence falls
into a subgrid. E.g. the handle of the screwdriver in Figure 5 has re-
peated feature curves in a 60◦ degree angle, while the shaft repeats
in a 180◦ angle. The 180◦ grid falls into the 60◦ grid. So when
the feature curves are transformed back for completion they are re-
peated at every grid location. Another limitation derives from very
jaggy curves. In this case the feature curve consolidation can fail
and multiple arcs representing the same feature occur in the tem-

(1) (2) (3) (4)

(1) (2) (3) (4)

[BWM∗11] our method

input correspondences input correspondences

Figure 8: Comparison to [BWM∗11]. The top and middle row show

results of our feature curve co-completion with (1) the input FCN,

(2) the co-completed FCN, (3) the connected components, and (4)

the feature curve groups that fall into the same template. The bot-

tom row depicts the results of [BWM∗11]. Note that our method

does not rely on topological correspondence of the curves and does

not require a user to select reoccurences in the presence of noise.

plate. In future work we plan to extend the template generation by
selecting the features by extracting part based models.

7. Conclusion and Future Work

In this paper we have presented a fully automatic method to com-
plete FCNs in the presence of noise. Previous methods rely on
user input for the completion of a FCN. For this we have devel-
oped a novel robust method for partial feature curve matching,
which is the basis for the co-occurrence analysis. With Bayesian
model selection we are able to group feature curves to their gener-
ating transformations, and identify feature curves that are not sup-
ported by the given model. We show structure detection in noisy
feature curve networks, which were generated fully automatically
on scanned real world data and compute completed networks that
contain meaningful feature curves.

These networks can be applied in various geometry processing
tasks, e.g. to apply feature preserving remeshing or smoothing of
the noisy geometry. The structure information can be used to com-
plete the geometry and to support various shape analysis tasks such
as retrieval, procedural modeling, or segmentation, which are more
challenging on real world data. Our method provides valuable input
to these approaches in the presence of noise.
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our method

curvature threshold 0.5 curvature threshold 1.0

curvature threshold 1.5

input FCN

Figure 9: Comparison of local feature curve denoising with three

different curvature thresholds to our method. By discarding the in-

put feature curves (top) based on their average curvature, weak but

relevant features are suppressed before all the noise is removed.

The co-occurrence analysis in our method (bottom right) allows

to identify reoccurring curve configurations and complete feature

curves that are not in the input feature set as well as neglect noisy

features that do not reoccur.
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