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Abstract

In this paper we present a new algorithm to create fair
discrete surfaces satisfying prescribedG1 boundary con-
straints. All surfaces are built by discretizing a partial dif-
ferential equation based on pure geometric intrinsics. The
construction scheme is designed to produce meshes that are
partitioned into regular domains. Using this knowledge in
advance we can develop a fast iterative algorithm resulting
in surfaces of high aesthetic quality that have no local mean
curvature extrema in the interior.

1. Introduction

A common method to guarantee excellent surface fair-
ness is to minimize fairness functionals based on geometric
invariants. One of the best known functionals in that cate-
gory are
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punishing the variation of the curvature. Here�
1

and�
2

are
the principal curvatures and̂e

1

and ê
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are the correspond-
ing principal curvature directions. A minimization process
based on such fairing functionals - this is especially true for
the latter - leads to surfaces of extraordinary quality, butdue
to the demanding construction process, the required compu-
tation time can be enormous [17].

A popular technique to simplify this approach is to give
up the parameter independence and approximate the geo-
metric invariants with higher order derivatives. For some
important fairness functionals this results in algorithmsthat
enable the construction of a solution by solving a linear sys-
tem [9].

A representant of this category is the thin plate energy
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which can be used to create surfaces satisfyingC

1 boundary
conditions.

Instead of minimizing a functional, another approach
first applies variational calculus to transform the minimiza-
tion problem into the problem of solving a differential equa-
tion with constraints. For the functional (1) the optimal sur-
faces can be characterized by the partial differential equa-
tion (PDE)

�

2

f = 0;

where� is the Laplacian operator. A solution can then be
constructed with standard methods such as finite differences
[2], finite elements [21] or by exploiting the knowledge that
the solution can be expressed in closed form using a Green’s
function [1]. The PDE approach was also the starting point
for operators which enable the construction of fair meshes
fast enough to be used in interactive mesh modeling [10].

The parameter dependent schemes enable fast construc-
tion algorithms, but the resulting surfaces usually do not sat-
isfy the same high aesthetic requirements as those created
with geometric invariants since their quality highly depends
on the underlying parameterization.

Instead of using variational calculus, the PDE approach
can also be seen as a reasonable approach to the fairing
problem in its own right, which is especially important for
fairing based on geometric invariants. This means instead of
searching for intrinsic energy functionals that lead to handy
PDE’s, it seems promising to search directly for simple in-
trinsic PDE’s producing fair solutions. In our case this idea
leads to the question which PDE based on geometric in-
variants seems suited for the creation of fair surfaces satis-
fying G

1 boundary constraints. We will discuss this ques-
tion in section 2. Our algorithm to construct the surfaces
is based on discrete data. This has been proven to be espe-
cially well suited for the construction of nonlinear splines



[13]. The idea behind the construction process is to design
an algorithm that creates meshes with subdivision connec-
tivity composed of regular patches. All patch edges besides
those that lie on the boundary are geodesics and all vertices
in the interior of each patch have a local1-neighborhood
with hexagonal shape. Exploiting this knowledge allows us
to speed up the construction algorithm considerably. We
will explain this technique in the sections 3 and 4. In sec-
tion 5 we show how to calculate the regular discrete solution
using an iterative scheme. Section 6 will give some imple-
mentation details and finally in section 7 we present some
examples demonstrating the capability of our algorithms.

2. Problem definition

We first have to determine which PDE’s seem suited to
solve our fairing problem. Let us summarize what proper-
ties have to be satisfied by the PDE:

� it should be based on geometric intrinsics

� it has to be as simple as possible

� it has to allow usG1 boundary constraints

� the resulting surface has to be fair

In many cases it is worthwhile to analyze the univariate case
first, when searching for a solution of a multivariate prob-
lem. The analogous formulation of the problem in the plane
is simple, because theG1 boundary condition are especially
easy to formulate. Given 2 points and 2 unit vectors, find a
curve segment that interpolates theG

1-Hermite data. A dif-
ferential equation that satisfies all properties in the planar
case is not hard to find
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where� constitutes the signed planar curvature ands the arc
length. The solutions are clothoids, circles and lines. Be-
cause of the nice property that the extremal curvature values
occur at the border and no local curvature extrema can ap-
pear in the interior, the curve is guaranteed to be fair [16].

At this point the question arises if this formulation can
be extended to describe a solution to our original bivari-
ate problem. An analogon to the second derivative oper-
ator is the Laplace-Beltrami operator�

B

, which extends
the planar Laplacian to a smooth surface [19]. In the pla-
nar case we know that the curvature distribution defines a
curve uniquely up to a rigid motion. For surfaces Bonnet’s
uniqueness problem [3] suggests that the mean curvatureH

is a curvature measure that comes next to this property. This
in mind, a candidate for such a PDE seems

�

B

H = 0: (3)

This PDE is simple and it is based on geometric intrinsics,
but does it satisfy the two remaining properties?

For a regular surface one can always find a local confor-
mal parameterization�(u; v) ! IR

3 [5], where conformal
means local isometry up to a scalar factor, i. e. there is
a �(u; v) such that�(u; v) =< �

u
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>= 0. With respect to such coordinates the
Laplace-Beltrami operator can be expressed as
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so beside of a nonzero factor it simplifies to the planar
Laplace Operator�. As is shown in [5] in conformal co-
ordinates we further get�� = 2�(u; v)

2

H~n, where~n is
the unit normal vector of the surface. This means we can
interpret (3) as a nonlinear extension of

�

2

� = 0:

As mentioned before, this equation can be used to construct
surfaces withC1 boundary constraints, so it seems promis-
ing that (3) is a candidate that allows usG1 boundary con-
straints.

From the mean value property of the Laplacian follows
that the extremal values of�� = 0 occur on the boundary,
so because of (4) this means that the extremal mean curva-
ture values will be reached at the border and that there are
no local extrema in the interior. This extends the univariate
property of (2) and hence the resulting surfaces satisfy an
important fairing concept [4].
This leads us to the following problem formulation:

Problem 1 Find a surface that satisfies theG1 boundary
constraints and whose interior solves the equation

�

B

H = 0:

3. Discretization background

In this section we define what is meant by a discrete solu-
tion of Problem 1. The definition leads to meshes consisting
of regular patches. Following an idea presented in [20] we
will exploit this structure by assigning a local parameteriza-
tion to each mesh vertex which allows us to create accurate
approximations of the discrete solution that can be calcu-
lated very efficiently. To simplify the notations, we will
assume that the border consists of one single closed curve,
but the algorithm extends to a border consisting of a number
of curves (Fig. 8).

3.1. Notation and definitions

Let p(t) be a parameterization of our borderp, let P =

fP

1

; : : : ; P

N

g be the set of the N vertices characterizing the



(a) (b) (c) (d)

Figure 1. Suitcase corner with 3 sides. a) A mesh �

P with one extraordinary vertex. b) The initial mesh
M

0 is constructed by using a linear subdivision scheme on �

P taking into account that the border
vertices Q have to be interpolated. c) Wireframe of the discrete soluti on after subdividing 3 times.
d) Shaded solution after subdividing 5 times.

border of an N-sided hole and let�P be a simple mesh that
fills the hole defined byP . This �

P determines the mesh
topology of the discrete solution (Fig. 1).

The setP divides the border curvep into N segments.
Let us approximate each of the N segments by a polygon
with r edges, producing a polygonQ with verticesQ =

fQ

1

; : : : ; Q

rN

g and the propertyP � Q � p. LetM be a
mesh with verticesM

i

whose topology is equivalent to a r-
fold uniformly subdivided�P interpolating the border points
Q (Fig. 1 b) c)). Because of the subdivision connectivity
structure we can partition the pointsM

i

into 4 classes:

� The border verticesQ are also called interpolation ver-
tices. Their position is fixed.

� The vertices of�P that are not inP are called extraor-
dinary vertices.

� The vertices that can be assigned to an interior edge of
�

P are called edge vertices.

� The remaining vertices that can be assigned to the in-
terior of a triangle face of�P are called inner vertices.

For simplicity, we will denote allM
i

that are no border
vertices as free vertices. For vertices of valencev let
M

i;l

; l = 1::v denote their adjacent neighbors. Because of
the subdivision connectivity structure, edge and inner ver-
ticesM

i

always have valence6. For edge vertices we define
the convention that the adjacent vertices are arranged such
thatM

i;1

andM
i;4

are aligned to the same edge. LetH

i

resp.H
i;l

be the discrete mean curvature atM

i

resp.M
i;l

and let~n
i

be a discrete unit normal vector atM
i

. In sec-
tion 4.4 and 4.8 we explain how we construct this intrinsic
values.

Let us further define a mean value operatorg

p

for all free

vertices. For edge and inner vertices this operator is

g

p

(M

i

) =

�

1=6

P

6

l=1

M

i;l

; if M
i

is an inner vertex,
1=2 (M

i;1

+M

i;4

); if M
i

is an edge vertex,

for extraordinary vertices we will give its definition in sec-
tion 4.7.

Finally we can define what is meant by a discrete solu-
tion of our problem

Definition 1 A meshM is called a regular discrete solution
of problem 1, if the following conditions are satisfied:

1. At all interpolation points ofM theG1 boundary con-
straints are satisfied.

2. The verticesM
i

ofM should be regularly distributed.
For all free vertices, there should be at

i

2 IR such
thatM

i

= g

p

(M

i

) + t

i

~n

i

.

3. At every free vertexM
i

we have
�

B

(H

i

) = 0.

A geodesic line has the property that its main normal vector
is parallel to the surface normal vector at every point of the
line [5], so we note that condition 2 implies that the edge
vertices will form a geodesic net in the interior of the mesh
M . The mean value operatorg

p

at the extraordinary ver-
tices strongly influences the geodesic net structure. Since
the inner vertices are distributed as regularly as possible,
this means condition 2 guarantees that the solution is parti-
tioned into regular patches (Fig. 1 c)), which is a property
that gives us much information about the meshM in ad-
vance. In [20] meshes consisting of regular patches were
used to efficiently construct surfaces with piecewise linear
mean curvature distribution, we will modify this idea to cre-
ate a very efficient construction algorithm for a regular dis-
crete solution.



3.2. Choosing the interpolation vertices

Because of condition 2 in definition 1, the discrete solu-
tion will be a collection of regular mesh patches. The inter-
polation verticesQ

i

have to reflect that, otherwise the mesh
structure will be distorted near the border and this would
decrease the quality of our local parameterizations. Hence,
a reasonable distribution of the interpolation vertices should
satisfy

jjQ

i

�Q

i�1

jj � jjQ

i+1

�Q

i

jj

for all Q
i

62 P . For piecewise smooth boundary curves,
uniform sampling of each of theN smooth border sides us-
ing an approximated arc length parameterization will satisfy
that condition.

4. Discretization of the geometric invariants
and the Laplace-Beltrami operator

For inner, edge and extraordinary vertices, our dis-
cretization technique is based on the well known idea to
construct a local quadratic least square approximation of
the discrete data and estimate all needed values from this
approximation.

Figure 2. The parameter domains for inner,
edge and extraordinary vertices.

4.1. General parameterization strategy

Instead of recalculating a local parameterization during
each step in the iteration, we exploit the fact that our meshes
are well structured to determine a local parameterization in
advance, thus accelerating our algorithms considerably. The
decision, which local parameterization should be assigned
to a vertexQ

i

was influenced by three mayor constraints:
simplicity, regularity and uniqueness of the quadratic ap-
proximation. This constraints lead us to the following local
parameterization classes. For inner vertices, the parame-
ter domain is a regular hexagon and for edge vertices it is
composed of two regular hexagon halves. Calculating the
matrices needed for a least square approximation in both
cases, it is easy to see, that this parameterizations always
lead to a unique least square approximation. Only at the

interpolation vertices it is not always sufficient to use the
1-neighborhood. This is obvious, if the valencev of the
vertex is3 or 4, but even if the valence is higher, the least
square approximation can fail in the 1-neighborhood. This
problem is similar to the problem that occurs when local
quadratic least square approximation is used for arbitrary
mesh fairing. In [25] it was proposed to determine the con-
dition number of the matrix needed for the least square ap-
proximation and to reduce the number of the basis functions
if the problem is ill conditioned. Instead of that approach,
we can exploit the fact that the extraordinary vertices are lo-
cated in a piecewise regular neighborhood. Using the com-
plete 2-neighborhood consisting of regular sectors for ver-
tices with small valence or parts of this neighborhood for
vertices of high valence we can make the least square ap-
proximation unique.

4.2. Construction of a local parameterization

We now have to define how to actually calculate the local
parameterizations for free vertices. In [9] Kobbelt presented
an approach to approximate a local isometric parameteri-
zation by exploiting the subdivision connectivity structure
of a subdivided mesh that minimizes the thin plate energy.
In our case this algorithm is even better suited to construct
good approximations for a local parameterization. The iter-
ation process leads to meshes that are partitioned into reg-
ular regions making it much simpler to get good local ap-
proximations by parameter domain blending. The idea of
the algorithm is to start with parameter domain seeds at
those vertices, where the regular mesh structure is inter-
rupted and to complete the local parameterizations at the
remaining vertices using blending operators. In our case the
parameter domain seeds have to be calculated at the extraor-
dinary vertices and the verticesP at the border. At extraor-
dinary vertices we can determine a local parameter domain
seed by applying an exponential map on its 1-neighborhood.
This operator maps a 1-neighborhood into the plane, such
that the distances of the vertex to its neighbors and the ra-
tio of the adjacent angles are preserved [25]. The 2-disc
domain for extraordinary vertices as presented in Figure 2
then results by applying one linear subdivision step. At the
verticesP we do not use the exponential map because the
local neighborhood is open, but here we can exploit the fact
that we know the tangent plane. We project the neighbor-
hood into the tangent plane and scale the resulting vectors
such that the vertex-neighbor distances are still preserved.

The remaining local parameter domains for the edge and
inner vertices (as we will see in section 4.8 there is no need
for a local parameterization at the remaining interpolation
vertices) are then derived by linear blending the seed tri-
angles, for a detailed description of this blending process
see [9]. Instead of blending the triangle parameters de-



scribed there, we got improved results when blending the
edge lengths of the triangles.

4.3. Determining a least square approximation

Let us first consider the functional case. Given a local tri-
angular parameterization domain and function valuesf

i

at
the vertices of the domain, we search for a quadratic func-
tion

f(x) = a

1

x

2

+ a

2

y

2

+ a

3

xy + a

4

x+ a

5

y + a

6

which minimizes the least square error at the domain ver-
tices. This problem is well known and leads to a linear sys-
temA~a =

~

f , where~a is the vector of the coefficientsa
j

and ~f is the vector of the function valuesf
i

. If the domain
has more than 6 vertices and the matrixA has full rank, this
linear system is overdetermined and the best least square
solution can be expressed as

~a = (A

t

A)

�1

A

t

f: (5)

In our case - we have3-D point information instead of
function valuesf

i

- the least square approximation is con-
structed by applying the functional scheme to thex; y andz
values of the vertices simultaneously.

4.4. Discretization of the geometric invariants

Using the coefficients of the least square approximation,
we can determine the normal vector and the first and sec-
ond fundamental form at the center vertex of the parameter
domain and can express the mean curvatureH as [5]

H =

1

2

eG� 2fF + gE

EG� F

2

; (6)

whereE;F;G are the coefficients of the first fundamental
form ande; f; g are those of the second fundamental form.

When we are only interested in intrinsic values, we can
use the fact that an affine mapping of the parameter domain
does only change the parameterization of our quadratic ap-
proximation, but no geometric invariants. This means to
merely determine the normal and the mean curvature for
inner vertices, it is sufficient to use an equilateral hexagon
as parameter domain, thus allowing us an especially simple
calculation of those values for such vertices. This is another
nice advantage of the local parameterization construction.

4.5. Discretization of the Laplace-Beltrami opera-
tor

The parameterization technique presented in [9] approxi-
mates a local isometric parameterization. In our case, where

we have patches with especially nice regular structure, the
approximation quality of such an approach improves con-
siderably. Moreover we do not even need a local isomet-
ric parameterization. In our case it is already sufficient to
have a local conformal parameterization, a wrong scaling of
the local parameter domains will not influence the solution.
This means we can interpret our local parameterizations as
good approximations of local conformal parameterizations.

For an conformal parameterization the equation�

B

H =

0 is equivalent to�H = 0, so in our case we can approxi-
mate�

B

with the planar Laplacian operator�. Following
the discretization technique of� presented in [9], we can
approximate�

B

using the local quadratic approximation
resulting in

� = 2(a

1

+ a

2

);

where the constant factor is of no interest in our case. Using
expression (5) this means we can find coefficients�

i

and
�

i;l

; l = 1; : : : ; v such that

�

B

H

i

= �

i

H

i

+

v

X

l=1

�

i;l

H

i;l

: (7)

For the special case when the domain is an equilateral trian-
gle and using the fact that multiplying with a nonzero fac-
tors does not influence the results we arrive at the simple
umbrella operator

�H

i

= �H

i

+

6

X

l=1

1

6

H

i;l

: (8)

which was used in [10] for interactive mesh modeling.

Figure 3. At edge and extraordinary vertices
we can restrict the update step to the sim-
ple case where the parameter domain is an
equilateral hexagon. The new parameter do-
main is chosen to be the maximum equilat-
eral hexagon in the interior of the local 1-
neighborhood of the center vertex.

4.6. Handling of edge and extraordinary vertices

As mentioned above, the discretization of the geometric
invariants and the Laplace-Beltrami operator is especially



comfortable when the parameter domain is an equilateral
hexagon, but this special case has more nice properties. The
equation�

B

H

i

= 0 using (7) defines a sparse linear sys-
tem in the unknownsH

i

and such systems are usually op-
timally solved using iterative multigrid algorithms. Assum-
ing the parameter domain at every vertex to be an equilateral
hexagon would produce a matrix that is symmetric and posi-
tive definite and hence we would be able to use very simple
iterative multigrid solver as for example based on Gauss-
Seidel iteration. Gauss-Seidel is known to be a slow itera-
tive solver when only applied at the finest level, but a fast
and comfortable solver in combination with multigrid meth-
ods [10]. Unfortunately the matrix is no longer symmetric
and positive definite when working with arbitrary parame-
ter domains, hence it is no longer guaranteed to be always
non singular and if the linear system is solvable it would re-
quire more involved iterative schemes like e. g. biconjugate
gradient iteration.

We discovered that only the discretization at edge and
extraordinary vertices affected the convergence of our
multigrid solver. For such vertices we found a very nice and
simple technique to avoid such problems. We first calculate
the least square approximation using the mean curvature
valuesH

i

andH
i;l

; l = 1; : : : ; v of a vertexM
i

and then
sample this least square approximation at a regular hexagon
that lies in the interior of the parameter domain (Fig. 3) re-
sulting in the new values~H

i;l

; l = 1; : : : ; 6. An iteration
step at edge and extraordinary vertices is then led back to
the comfortable symmetric case (8) by using the new sam-
pled ~

H

i;l

instead of the originalH
i;l

. Since the~H
i;l

lie on
the quadratic least square approximation for the original pa-
rameter domain, a recalculation of the least square approx-
imation using the new domain and the new neighbors will
reproduce the same function, hence this sampling technique
does not lead to false local informations. But an update step
(8) with this new sampled points~H

i;l

has again the simplic-
ity and stability advantages of the equilateral case.
Note: It is important that the equilateral hexagon lies in the
interior of the original domain, otherwise the sampling step
is no longer an interpolation but an extrapolation and hence
loses its stability.

4.7. Mean value operator for extraordinary vertices

The geodesic net defined by the edge vertices is deter-
mined by the position of the extraordinary vertices, so the
mean value operatorg

p

at such vertices defines the parti-
tioning of the discrete solution. The resampling technique
presented in section 4.6 can also be applied to the local
quadratic least square approximation of the1-neighborhood
of M

i

resulting in new vertices~M
i;l

. We found it a reason-
able strategy that the geodesic net of the discrete solution
should have a shape that is similar to those of the simple

mesh �P , so we defined the mean value operator here to be
the center of the subsampled vertices~M

i;l

. Hence, for the
final definition of the operatorg

p

we get

g

p

(M

i

) =

8

<

:

1

6

P

6

l=1

M

i;l

; M

i

inner vertex;
1

2

(M

i;1

+M

i;4

); M

i

edge vertex;
1

6

P

6

l=1

~

M

i;l

; M

i

extraord. vertex:

q

t

q

q

q

qn

t

l

kj

i

l

t

t i

j
k

Figure 4. Projecting the neighborhood of q

onto the plane defined by ~
n and normalizing

the results we get the normal curvature direc-
tions ~

t

i

.

4.8. Discretization of the mean curvature at inter-
polation vertices

At the interpolation vertices we have a completely differ-
ent situation. Here we only have one sided information of
the mesh neighborhood, but therefore we know the tangent
plane of the final surface. Since these vertices do not have
to be updated during the iteration process, we only need the
value of the discrete curvature.

Even if we would not only know theG1 boundary con-
ditions but the surrounding surface, we must not use outer
points for the curvature estimation since the resulting sur-
face does not have to be curvature continuous at the border.
In [10] a rough approximation of the solution of�2

f = 0

with C

1 boundary constraints was solved by applying the
umbrella operator for interior and border vertices, but this
simple strategy is not suitable for high quality surfaces.

A curvature estimation algorithm that seems ideal for our
needs was presented by Moreton and Sequin [17]. The idea
behind this approach is to use the fact that normal curvature
distribution can not be arbitrary, but is determined by the
Euler-formula [5]. We describe how to discretize the mean
curvature at a mesh vertexq, when the normal vector~n at q
is known.



Let q
j

; j = 1 : : :m be the vertices adjacent toq and let
~

b

x

and~b
y

be an arbitrary orthonormal basis of the plane de-
fined by the normal~n. To each vertexq

j

we can assign a
unit direction vector~t

j

by projectingq
j

into the plane and
scaling this projection to unit length (Fig. 4). For each ver-
tex q

j

we can now estimate a normal curvature~�
j

as the
inverse of the circle radius defined byq; q

j

andt
j

.
Using the Euler formula, we can express the normal cur-

vature�
n

for a direction~t by the principal curvatures�
1

and
�

2

and the principal curvature directions~e
1

and~e
2

. Let t
x

andt
y

be the coordinates oft in the basis~b
x

;

~

b

y

and lete
x

ande
y

be the coordinates of~e
1

, then the normal curvature
can be expressed as

�

n

=

�

t

x

t

y

�

t

�K �

�

t

x

t

y

�

with

K =

�

e

x

e

y

�e

y

e

x

�

�

�

�

1

0

0 �

2

�

�

�

e

x

e

y

�e

y

e

x

�

�1

:

The idea of Moreton and Sequin is to use the normal curva-
tures~�

j

to create a linear system and find estimates for the
unknown curvature values by determining the least square
solution. Lett

j;x

andt
j;y

denote the coordinates of~t
j

, then
we get

Ax = b

where

A =

2

6

6

4

t
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0;x

t

0;x
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0;y

t
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0;y
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A

Using the normal equations, the least square solution~x can
be expressed as~x = (A

t

A)

�1

A

t

b. SinceH =

1

2

(�

1

+

�

2

) =

1

2

(x

0

+x

2

) this means we can approximate the mean
curvature as~H =

1

2

(~x

0

+ ~x

2

).

5. Surface construction

We construct the surface using an iterative solverM

k

!

M

k+1 starting with an initial meshM0. In each itera-
tion step every free vertexMk

i

is moved to a new position
M

k+1

i

, while the interpolation verticesQ do not change
their position. The equations determining the new position
M

k+1

i

are nonlinear unlike the equations usually occurring
in iterative algorithms for parameter dependent functionals.

The idea behind the construction of high quality surfaces
based on nonlinear equations is to work with the original
equations and linearize the construction process instead of
simplifying the functionals itself [18, 6, 20]. This is of-
ten possible by keeping those values constant that will only
have small changes during one single iteration step.

In our case we used the mean curvature linearization
technique presented in [20] which is well suited when local
parameterizations are available. In [20] this technique was
used to enable a fast construction algorithm for meshes with
subdivision connectivity having piecewise linear mean cur-
vature distribution. As was mentioned there, this technique
can be applied for two principle iteration approaches. The
first approach linearizes the nonlinear equations locally,the
second is based on the idea to use the available global infor-
mation about the curvature distribution. We will now show
how these ideas can be used to derive an iteration scheme
for our fairing problem.

5.1. Direct approach

When updating the vertexMk

i

in an iteration step, the
new position is determined by the two equations

M

k+1

i

= g

p

(M

k

i

) + t

i

~n

k

i

and �

B

(H

k+1

i

) = 0:

The first equation reduces the3-variate to a univariate prob-
lem and the second equation is then used to determine
the vertex position. Because of our discretization of the
Laplace-Beltrami operator, the latter condition can be ex-
pressed as

�

i

H

k+1

i

+

6

X

l=1

�

i;l

H

k+1

i;l

= 0: (9)

To linearize this nonlinear equation, we exploit the fact that
the updated mesh verticesMk+1

i

will be nearMk

i

in the
k + 1 iteration and hence the vertices and the mean curva-
ture values will not change much. This in mind, we use
H

k

i;l

instead ofHk+1

i;l

in equation (9) and simplifyHk+1

i

by using the verticesMk

i

instead ofMk+1

i

to calculate the
coefficientsE;F andG of the first fundamental form. So
using (6) equation (9) leads to

1

2

eG� 2fF + gE

EG� F

2

= �

1

�

i

6

X

l=1

�

i;l

H

k

i;l

and we have to find at
i

such that this equation is satisfied.
Applying (5) and replacing the normal vector~nk+1

i

by ~nk
i

when calculating the coefficients of the second fundamental
form e; f andg, this equation becomes linear int

i

and we
can determine the new vertexMk+1

i

by solving this linear
equation.



Since the vertices are updated along the surface normals,
this approach can be interpreted as some kind of curvature
flow, where the speed is determined by a local equation sys-
tem. As was pointed out by Desbrun et al. [6], flows de-
pending only on local surface properties do not have to be
numerically stable for large steps during the iteration pro-
cess. To allow larger update steps, Desbrun et al. used the
backward Euler method to develop an algorithm called im-
plicit integration for fairing of arbitrary meshes based on
Laplacian and on mean curvature flow. The idea behind
this approach is to use global surface information instead of
considering the local neighborhood only. In [20] Schneider
and Kobbelt presented an algorithm called indirect iteration,
that efficiently exploits global surface properties for subdi-
vision connectivity meshes, when fairing is based on linear
curvature distribution. We show in the following that this
idea can be extended to our fairing problem as well.

5.2. Indirect iteration

The central idea of the indirect iteration is to decouple
the curvature information from the actual mesh geometry.
In our case this means if we could iterate�

B

(H

k+1

i

) =

0 without affecting the curvature informationHk+1

j

along

the interpolation pointsQk+1

j

= Q

j

, we would arrive at a
solution of the following Dirichlet problem:
Find scalar valuesHk+1

i

such that�
B

(H

k+1

i

) = 0 with
given boundary valuesHk+1

j

at the interpolation vertices.
So the analogon of the linear indirect approach presented in
[20] can be formulated as follows:

� Determine the actual curvature valuesH

k

j

at the inter-
polation verticesQ

j

using the technique described in
section 4.8.

� Determine mean curvature values~Hk+1

i

for the
free vertices by solving the Dirichlet problem
�

B

(

~

H

k+1

i

) = 0 using the determined mean curvature
valuesHk

j

at the border.

� Use the ~Hk+1

i

to update the free verticesMk

i

. In the
update step the new position is then determined by the
two equationsMk+1

i

= g

p

(M

k

i

) + t

i

~n

k

i

andHk+1

i

=

~

H

k+1

i

.

The nonlinear equation is linearized by analogous tech-
niques as described in the direct approach, thus the new po-
sition can again be determined by solving a linear equation
for t

i

. As was mentioned in [20] it is important to restart
at step 1 after step 3. An iteration scheme that only iterates
step 3 would not converge in general, since~Hk+1

i

are only
estimates of the according values of the final solution.

In this formulation the indirect iteration is very expen-
sive, because in every iteration step we have to solve a lin-
ear system for the next mean curvature estimates, but this

can be avoided. We know that the actual discrete mean cur-
vature values in the interior are approximations for the solu-
tion of the linear system occurring in step 2 and the quality
of the approximation improves rapidly during the iteration
process. Further it is not necessary to solve the linear sys-
tem exactly, it is sufficient to approximate the solution. This
means we can change the first and second step:

� Determine the actual curvature valuesH

k

i

at the inter-
polation verticesandat all free vertices.

� Use theHk

i

at the free vertices as initial values and de-
termine new mean curvature values~Hk+1

i

by applying
s iteration steps of an iterative solver for the Dirichlet
problem.

If the actual meshMk is already a good approximation of
the discrete solution, it is not necessary to choose a larges.

6. Details

Because of the subdivision connectivity of the MeshM ,
all examples were created using a multigrid iteration, a tech-
nique that has proven to be excellent when hierarchic struc-
tures are available [8, 9]. Here a solution is first created ona
coarse level and then serves as starting point for the iteration
scheme in the next hierarchy level. Applying this strategy
across several levels of the hierarchy, the convergence speed
of the construction process can increase dramatically. Since
the high frequency error is smoothed because of the hier-
achical structure, we can use the simple Gauss-Seidel algo-
rithm when iterating step 2 of the indirect iteration scheme.

The mesh topology of the constructed discrete solution is
determined by�P . For the N-sided hole filling problem such
a triangular mesh can often be generated automatically, for
holes with a more complex boundary or for problems with
more than one boundary curve, such a triangular mesh has
to be provided by the user.

The initial meshM0 is constructed using a linear subdi-
vision scheme, this means we apply linear subdivision on
the mesh�P but take into account thatM0 has to interpo-
late the verticesQ (Fig. 1 b)). This is not only fast and
convenient, but it guarantees that the verticesM

0

i

are reg-
ularly distributed. Since this approach produces peaks at
the extraordinary vertices, it would not be a reasonable idea
to start iterating on the finest level, but it works fine in the
multigrid scheme since we only have to subdivide to the
coarsest level.

As mentioned earlier the direct approach is not suited if
large update steps can occur, therefore our implementation
is based on the indirect iteration scheme. Since large up-
date steps are only necessary in coarse hierarchy levels, our
iteration numbers is chosen small for fine hierarchy levels
and large for the coarsest level. Instead of prescribings,



(a) (b) (c)

Figure 5. The classical house corner problem. a) A regular di screte solution of a 3 times subdivided
mesh �

P with 1 extraordinary vertex and 5 sides. b) Shaded discrete solution of a 5 times subdivided
mesh. c) Lines of reflection of a 5 times subdivided mesh indicating that the solution satisfie s the
G

1 boundary conditions and is at least G

2 in the interior.

(a) (b) (c)

Figure 6. Suitcase corner with 9 sides and 3 sharp edges at the border. a) Discrete solution of a 3

times subdivided mesh. b) and c) Because of the sharp edges we subdivided 6 times. Again the
lines of reflection indicate the G

1 continuity at the border and the higher continuity in the int erior.

(a) (b) (c)

Figure 7. Suitcase corner with 6 sides where 3 sides are defined by cylinders with different sizes. a)
Discrete solution of a 3 times subdivided mesh. b) and c) Discrete solution of a 5 times subdivided
mesh.



(a) (b) (c)

Figure 8. Blending two cylinders of different size. a) Discr ete solution of a 3 times subdivided mesh.
b) and c) Discrete solution of a 5 times subdivided mesh.

one can iterate on each level until all free vertices satisfy
�

B

(H

k

i

) < � for a given tolerance�.
When solvingHk+1

i

=

~

H

k+1

i

in the update step of the
indirect iteration, we apply the resampling technique pre-
sented in section 4.6 also to the neighbor vertices ofM

k

i;l

resulting in new vertices~Mk

i;l

and use these vertices to up-
dateMk

i

. Thus we again profit from the simplicity and sta-
bility advantages of the equilateral case.

At edge and extraordinary vertices we cached the matri-
ces(At

A)

�1

A

t in (5) thus allowing us a fast least square
approximation. For inner vertices this is not necessary,
since the resulting formulas here are simple enough to be
calculated on the fly.

When starting on the coarsest level, the initial local pa-
rameterization is constructed using the vertices of�

P as
seeds. Since the resulting parameter domains are only rough
approximations, we recalculate the parameter domains once
when the mesh approximates the final solution at a coarse
level. In the examples this was done when the solution of a
3 times subdivided mesh had been constructed.

7. Examples

In CAGD there are many fields of application whereG1

boundary constraints naturally appear. One of the most im-
portant is the N-sided hole filling problem, which is without
doubt one of the most studied problems in geometric mod-
eling [7, 14, 23, 12]. Solutions for some classical N-sided
hole problems obtained with the proposed techniques can

be seen in the figures. The lines of reflection indicate the
G

2 continuity in the interior (smooth lines) andG1 conti-
nuity at the border (continuous lines) in all our examples.
As can be seen in Figure 8 our algorithm is not restricted to
a border that consists of one single closed curve only. In this
example we calculated the solution for a blending problem.

The construction algorithm is implemented in Java 1.2
for Windows running on a PII with 400MHz. For our pre-
sented examples the average iteration time for a3 times sub-
divided mesh was� 1:0 seconds and for5 times subdivided
meshes� 4:0 seconds. An optimized C implementation
would improve these timings without doubt.

8. Conclusion

Despite the fact that the construction idea is based on
pure geometric intrinsics and the resulting high quality fair-
ness, we presented a discrete fairing algorithm that is fast
enough to become interesting in interactive design. The re-
sulting meshes have an especially interesting structure, they
are composed of regular patches where the interior patch
edges form geodesics on the discrete surface.

This property allowed us to construct an efficient itera-
tion algorithm, which should also be very useful when one
does not need a discrete solution, but a surface composed of
spline patches. In such a case the piecewise regular struc-
ture may be exploited when approximating or interpolat-
ing the mesh using polynomial splines. The presented al-
gorithm allowed usG1 boundary constraints, by increasing



the degree of the intrinsic PDE it should be possible to allow
higher geometric continuity constraints at the border using
analogous techniques.
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