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Abstract. We propose an e�cient and 
exible scheme to fairly inter-

polate or approximate the vertices of a given triangular mesh. Instead of

generating a piecewise polynomial representation, our output will be a re-

�ned mesh with vertices lying densely on a surface with minimum bending

energy. To obtain those, we generalize the �nite di�erences technique to

parametric meshes. The use of local parameterizations (charts) makes it

possible to cast the minimization of non-linear geometric functionals into

solving a sparse linear system. E�cient multi-grid solvers can be applied

which leads to fast algorithms that generate surfaces of high quality.

x1. Introduction

Fairing schemes which construct a surface by solving a constrained opti-

mization problem, are traditionally based on piecewise polynomial represen-

tations [2,9,16,18]. The major di�culty in this approach is that on one hand

e�cient (linear) schemes are in general dependent on the speci�c parame-

terization and hence fail to be proper models of the physical or geometric

intent [7]. On the other hand more sophisticated non-linear optimization is

computationally involved and often unstable [15].

The basic idea of the variational design approach is to measure the quality

of a surface in terms of its bending energy. The most common functional is

the total curvature
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which approximates the bending energy of a thin plate. However, since the

principal curvatures and the area element depend non-linearly on the sur-

face S, this functional is di�cult to minimize. For practical fairing schemes,

the total curvature is therefore replaced by the so-called thin-plate functional
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Fig. 1. The triangular mesh on the left is interpolated by surfaces mini-

mizing the thin-plate energy. In the center all patches are parameterized

over equilateral triangles; on the right the parameterization is approxi-

mately isometric. The shape of the right surface looks `better` since the

true total curvature functional is approximated closer in this case.

which turns out to be identical to the total curvature if the parameterization
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! S is isometric. Alas, this assumption is far from being satis�ed

in general. Minimizing (2) instead of (1) hence changes the mathematical

model for fairness signi�cantly and the geometric justi�cation for the approach

is no longer valid (cf. Fig 1).

Opposed to the exact minimization of the approximate energy functional

is another class of fairing schemes which approximate the minimum of the

true functional by non-linear optimization techniques. Those schemes are

mainly based on point evaluation of the integrand function �
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and apply

a quadrature formula with respect to an estimated area element [15].

A third way of dealing with the intrinsic non-linearity in the problem of

generating fair surfaces is to hide it in the parameterization. In [7] a promis-

ing approach to achieve this goal is proposed where the parameterization of

the surface S is de�ned over a non-planar domain. However, the concept of

data-dependent functionals still lacks the necessary 
exibility to construct sur-

faces of arbitrary topology since G

k

boundary conditions between individual

polynomial patches have to be observed.

All the above mentioned approaches are focused on the generation of

spline surfaces. In this paper I propose a practical (i.e. simple, fast and ro-

bust) scheme to compute re�ned triangular meshes with vertices lying densely

on a fair surface. There are no topological restrictions as long as the mesh is

locally isometric to a disc. The scheme has linear complexity in the number

of generated triangles and works completely automatical.

x2. Classical Fairing

In the classical fairing setting an optimal surface is sought in a space

spanned by a �nite element basis f�

i

g while maintaining smoothness condi-

tions across the boundaries between elements (e.g., a spline space). There are

two major di�culties in this approach:

� A consistent C

k

-parameterization of closed surfaces is not possible in

general and hence geometric continuity conditions are introduced. By this,

however, we loose the linear structure of the search space which makes the

optimization much more di�cult.
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� Approximating geometric curvatures by a combination of second order

partial derivatives is a rather bad mathematical model (cf. Fig 1). A parameter

correcting optimization algorithm could reduce the fairness energy without

actually modifying the geometric shape of the surface.

The conditions for interpolation or approximation and for the smooth

connection between adjacent patches can be imposed either by directly elim-

inating degrees of freedom or by Lagrangian multipliers or by some penalty

method that includes an additional term which measures the approximation

error and the non-smoothness between patches, into the energy functional.

Once a proper basis f�

i

g for the search space is chosen, the minimization

of (2) is a rather simple task: We formally compute the partial derivatives of

the objective functional with respect to the coe�cients c
c
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and set them to zero. The solvability of the optimization problem is guaran-

teed if the kernel of the energy functional (2) and the kernel of the approx-

imation constraint (i.e., the space of functions having the value zero at all

approximation sites) have a trivial intersection.

x3. Non-classical Fairing

When generating globally fair surfaces, the goal to achieve well distributed

curvature with as few oscillations as possible is much more important than

in�nitessimal di�erentiability. For instance the penalty methods [15] exploit

the fact that in practical applications, tangent plane continuity is established

if the jumps of the normal vectors fall below some "-threshold.

Non-classical fairing schemes use this observation as a justi�cation for

no longer requiring C

k

smoothness. Surfaces are approximated by piecewise

linear C

0

polyhedra and the shape of these polygonal meshes is optimized. The

big advantage provided by those mesh-smoothing algorithms is their 
exibility

with respect to the topology of the surface to be modeled: The C

0

conditions

in a triangular mesh are trivially guaranteed.

There are several approaches that apply smoothing operators to meshes

in order to improve their fairness. Linear operators have the advantage of

being fast and easy to implement [17] but non-linear operators are able to

additionally preserve important geometric properties [6,14]. Some schemes

increase the fairness of a mesh by changing the positions of the vertices only,

others also allow topological changes of the mesh [3,10].

Most of the non-classic schemes are designed to operate on �ne meshes

where, e.g., noise has to be removed. The task of interpolating a given coarse

mesh by a �ner one can apparently be reduced to the �rst problem by taking

the original mesh, subdividing all the triangles uniformly to introduce degrees

of freedom for the optimization and then applying a smoothing operator.

Most of the proposed schemes, however, will perform very poorly on this type

of data. The reason for this is the typical low-pass characteristics of local



4 L. Kobbelt

Z

S

�

2

1

+ �

2

2

dS

X

i

!

i

k�(p
p
p
p
p
p
p
p
p

i

)k

2

Z




F

2

uu

+ 2F

2

uv

+ F

2

vv

dudv

F :2 spanf�

i

g

4 { mesh

linearize

Galerkin

sample

optimize

discretize

Fig. 2. Di�erent paths lead from the original mathematical model of

fairness (top) to an approximative solution represented by a triangular

mesh (bottom).

smoothing operators. Local high frequency noise is �ltered out very quickly

but changes of the global shape are propagated very slowly.

x4. The Discrete Fairing Approach

An algorithmic approach to free form surface design are subdivision sur-

faces [5]. Here, a surface is not de�ned by a map from the parameter domain

into IR

3

but by a rule how to compute points on [12] or close to [1,4] that sur-

face. Generalizing the concept of knot insertion for B-splines, a subdivision

surface is de�ned by a coarse mesh roughly describing its shape and a rule how

to re�ne the mesh. By applying this rule recursively, we obtain a sequence of

�ner and �ner meshes which converge to a smooth limit surface. In practice

the re�nement is only repeated until the resulting mesh approximates the �nal

surface up to a prescribed tolerance.

In the discrete fairing algorithm [13] we use the topological aspect of this

iterative surface generation paradigm to de�ne a nested sequence of meshes.

The actual position of the new vertices when re�ning a given mesh will be

determined by the minimization of a bending energy functional.

Algorithmically we are exactly in the situation described at the end of the

last section: We re�ne a given mesh topologically and then apply a smoothing

scheme to improve the fairness. However, we can exploit the fact that iterative

re�nement generates a sequence of meshes which match the requirements for

multi-grid solvers [8]. This accelerates our scheme considerably.

Fig. 2 compares the di�erent approaches to fairing. The crucial step in

the discrete fairing approach is to discretize the original continuous functional.
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The 
exibility of this approach stems form the fact that the requirements for

the discretization are much less demanding than the set-up for the Galerkin

projection based approaches.

For the discretization step we only need two ingredients. First, we have

to replace the surface integral by a quadrature formula, i.e., by a weighted

sum of samples of the integrand function
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A natural choice for the sampling sites are the vertices p
p
p
p
p
p
p
p
p

i

of the mesh (it is

here where the discrete curvature is actually located). The weight coe�cients

!

i

have to re
ect the local area element, i.e., the triangles' relative size.

To sample the integrand function at each vertex, we have to compute

second order partial derivatives. We do this by applying divided di�erence

operators �

i;�

which are constructed by �nding a quadratic least squares

approximant to the direct neighbors of each vertex with respect to a local

parameterization
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Since we have to evaluate the derivatives at isolated points only, we can �nd

locally isometric parameterizations and exploit the fact that geometric cur-

vatures coincide with a combination of second order derivatives in this case.

Constructing a new set of divided di�erence operators �

i;�

for every vertex p
p
p
p
p
p
p
p
p

i

allows us to choose a di�erent parameterization �

i

for each. Hence, we can

compute derivatives (divided di�erences) always with respect to local param-

eterizations (charts). To de�ne those we estimate the tangent plane at each

vertex and get the parameter values for the neighbors by orthogonal projec-

tion. Another possibility is to approximate the exponential map by assigning

parameter values according to the length of the edges and the angles between

them [13,19]. Notice that the integrand function in (2) is rotational invariant.

It is tempting to re-estimate the local charts in every step of the iterative

optimization. This makes sense given that the current mesh is always the

best available approximation to the optimum. However, it turns out that

this additional freedom makes the problem severely unstable. In [19] such a

smoothing scheme is proposed but the authors have to introduce additional

topological operations in order to balance the instability.

Following [13] we want to cast the fairing problem into a simple quadratic

optimization problem and we want to �nd the \best" discrete approximation

to the original objective functional. The way to satisfy both goals is to esti-

mate the local charts, i.e., the local metric of the �nal surface by looking at the

given data only. In [13], a weighted average between the discrete exponential

map and the uniform parameterization is proposed. This initial estimate is

kept �xed during the whole optimization process making the fairing energy

functional quadratic with respect to the variables (= vertices).

For special de�nitions of the local charts observing the subdivision con-

nectivity of iteratively re�ned meshes, [13] shows that the solution of the
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optimization problem is uniquely de�ned, i.e., the fairing functional is strictly

positive de�nite.

We can understand this approach as being dual piecewise polynomial. In-

stead of assigning polynomial patches to the faces of a given mesh, we assign

them to the vertices. This is implicitly done when solving the Vandermonde-

system to construct the divided di�erence operators. For the evaluation of the

discrete functional we only have to know these polynomials (and their deriva-

tives) at the vertices but we can assume the virtual existence of a continuous

surface consisting of patches around each vertex without having to care about

their smooth connections.

x5. Results

The discrete fairing scheme has been implemented based on a modi�cation

of a V-cycle multi-grid scheme [8]. Since appropriate stationary subdivision

schemes provide smooth (but not necessarily fair) meshes, we don't have to

pre-smooth the mesh before going to a coarser level. In fact, is it enough to

compute the back-leg of the V-cycle, i.e., we alternate topological subdivision

and iterative smoothing.

The special eigenstructure of the Gau�-Seidel iteration matrix in our case

implies fast convergence in high frequency sub-spaces but very slow conver-

gence at low frequencies. As a consequence, the mesh is 
attened very quickly

but converges slowly to the true solution. This e�ect can sometimes be ob-

served at the original vertices where interpolation constraints are imposed:

Occasionally visible cusps remain and are smoothed out rather slowly.

Since exact interpolation in the interior of the surface is an arti�cial

constraint anyway, we avoided this problem by letting the original vertices

move by some " in a post-processing step. This removed the \pimples" but

did not have signi�cant e�ect on the global shape.

An important issue for practical applications is the control of the bound-

aries. As suggested in [12], we use a univariate scheme [11] to generate bound-

ary curves that are independent of the interior of the mesh. This allows not

only to join two surfaces along a common C

0

feature line but it also gives the

possibility to model sharp feature lines within an otherwise smooth surface.

Fig. 3 shows an example of a surface generated by the discrete fairing scheme.

x6. Conclusions and Future Work

I presented a very e�cient and robust scheme to generate triangular

meshes that smoothly interpolate the vertices of a given mesh. There are

no serious restrictions on the topology since no global surface parameteriza-

tion has to be constructed. All we need are estimates of the local metric at

each vertex. Upon this we can construct divided di�erence operators that

allow the approximation of partial derivatives with respect to an isometric

parameterization. Together with an estimation of the relative area element

we can de�ne a discrete version of the continuous objective function.
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Fig. 3. A fair surface generated by the discrete fairing scheme. The


exibility of the algorithm allows to interpolate rather complex data by

high quality surfaces. The process is completely automatical and took

about 10 sec to compute the re�ned mesh with 50K triangles.

Due to the multi-resolution structure of meshes with subdivision connec-

tivity, we can apply fast multi-grid solvers to compute the positions of the

vertices in the optimal mesh. Right now, we generate moderately complex

models within a few seconds | in the future interactive modeling should

become possible.

Future research in this �eld should address the investigation of higher

order fairing functionals since those lead to even better results in some cases.

However, higher order partial derivatives require local parameterizations that

cover a larger neighborhood around each vertex. This increases the number

of topological special cases that have to be considered.

Unlike classical fairing schemes, the discrete scheme does not generate

spline surfaces. However, if compatibility to some standard CAD data ex-

change format matters, the obtained meshes can be converted into a spline

representation. This can be achieved by any simple least squares �tting scheme

with parameter correction since the duty to establish fairness has already been

taken care of by the discrete fairing scheme. The philosophy behind this pro-

cedure is to do the fairing by some 
exible discrete (non-classic) method and

once a su�cient number of points on the optimal surface is computed and the

fair shape is recovered, we can use standard spline surfaces for the concluding

�tting step.

If the original approximation constraints are considered as local forces

that pull or push the surface into the wanted position then the discrete fairing

allows to generate many, more densely distributed mini-forces that pull the

spline surface more accurately into the optimal position.
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