Volume 29 (2010), Number 2 pp. 1-12

Generalized Use of Non-Terminal Symbols
for Procedural Modeling

L. Krecklau, D. Pavic and L. Kobbelt

RWTH Aachen University, Germany

Abstract

We present the new procedural modeling language G? (Generalized Grammar) which adapts various concepts
from general purpose programming languages in order to provide high descriptive power with well-defined se-
mantics and a simple syntax which is easily readable even by non-programmers. The term "Generalized" reflects
two kinds of generalization. On the one hand we extend the scope of previous architectural modeling languages
by allowing for multiple types of non-terminal objects with domain-specific operators and attributes. On the other
hand the language accepts non-terminal symbols as parameters in modeling rules and thus enables the definition
of abstract structure templates for flexible re-use within the grammar. By deriving G? from the well-established
programming language Python, we can make sure that our modeling language has a well-defined semantics. For
illustration, we apply G~ to architectural as well as plant modeling in order to demonstrate its descriptive power
with some complex examples.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Languages—I.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling—I.3.7 [Computer Graphics]: Three-Dimensional

COMPUTER GRAPHICS forum

Graphics and Realism—

1. Introduction

Procedural modeling has become a well established ap-
proach in applications where highly complex three-
dimensional (3D) scenes with rich detail have to be gener-
ated [WMV™08]. In movie production and game industry,
this approach is often used for the mostly automatic gen-
eration of realistically looking architecture, landscapes, or
plants [Whi06, Zal04] (cf. Figure 1).

In contrast to conventional geometric representations like
polygon meshes or voxel grids, procedural models describe a
scene by a set of rules that recursively convert an input sym-
bol (non-terminal) into a sequence of output symbols (ter-
minal or non-terminal). There are several different produc-
tion systems that can be applied for 3D content creation. For
example, plant modeling often relies on string replacement.
At a certain step the evaluation is stopped and the resulting
string is visually interpreted. In contrast, architectural mod-
eling is usually inspired by shape replacement in a coarse
to fine fashion. Each step of the evaluation will bring more
detail into the shape. As a consequence, the procedural de-
scription of a model usually looks like a snippet of source
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Figure 1: We present G? which utilizes different modeling
concepts in order to combine several object types like build-
ings or plants as seen in this artistic image.
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code written in some very basic programming language. The
design of such a geometric programming language has to be
done very carefully. If the language is too simple we lose
the generality to design complex and general scenes. If it is
too complicated, the code is no longer intuitively readable
by non-programmers.

In this paper we focus on the idea of shape replacement
as it is traditionally used in procedural modeling languages
which are custom designed for the creation of buildings.
Since rules for general shape replacement are hard to handle
in practice, these languages in the domain of architectural
models utilize translation, rotation, scaling and splitting op-
erators working on simple boxes.

The novel procedural modeling language G* generalizes
previous approaches by allowing for multiple non-terminal
classes instead of limiting to simple boxes only. In order to
increase the descriptive power while keeping the semantics
clear and unambiguous as well as keeping the syntax human
readable, we adapt various concepts from existing general
purpose programming languages. In particular we extend ex-
isting procedural modeling systems by

Abstract Structure Templates. — We support the use of
non-terminal symbols as user parameters to take the simplic-
ity of the grammar one step futher by defining abstract struc-
ture templates which are encapsulated into modules in order
to prevent variable propagation and to avoid name clashes.

Non-Terminal Classes. — Non-terminal objects can be of
different types. Each type has special operators and at-
tributes that are implicitly declared by the system. This free-
dom brings procedural modeling much closer to conven-
tional modeling paradigms.

Flags — We introduce flags as a mechanism for local
changes. Flags identify specific subtrees in the scenegraph
without creating variable dependencies between the rules.

The name G> (Generalized Grammar) reflects two kinds
of generalization. On the one hand the syntax of the gram-
mar is generalized compared to previous approaches, i.e. it
is easy extendable by new non-terminal classes thereby pro-
viding new modeling strategies. On the other hand user de-
fined grammars become generalized by using abstract struc-
ture templates in order to make a scene description more
compact and maintainable.

Furthermore, we derive our modeling language from the
general-purpose language Python that allows for an easy im-
plementation of our system.

1.1. Related Work

Procedural techniques have been used in several applica-
tions. Lindenmayer and Prusinkiewicz pioneered automatic
plant generation [PL96] by using L-Systems. The result-
ing string can be visually interpreted as LOGO-style turtle
graphics. This idea was then extended by several authors uti-
lizing different formal language concepts like parameters,

stochastic rule application, context-sensitivity [PHHM97]
and environmental-sensitivity [PJM94] resulting in the plant
modeling language cpfg [PHMO00, PKMHOO]. Positional in-
formation was later used in order to get better control over
the growth process and its overall appearance [PMKLO1].
L-Systems also fit perfectly well to the generation of street
networks as long as the system provides self-sensitivity
[PMO1].

In contrast to a growth process that is achieved with L-
Sytems, man-made structures like architecture are better de-
signed in a coarse to fine fashion by utilizing splitting rules
to decompose basic shapes into other shapes [WWSRO3].
The concept of replacing shapes was pioneered by Stiny
[Sti75, Sti80] who introduced the concept of shape gram-
mars. Miiller et. al. presented CGA shape, which utilizes
scopes (i.e. bounding boxes containing any geometry) for the
hierarchical build-up of the scene [MWH™06]. Mass models
are the basis for the building structure. Occlusion queries
and snapping lines lead to well arranged facade elements
like windows or doors. However, the system is restricted to
scopes acting as bounding boxes to load geometry which be-
comes a problem, e.g., if rounded objects have to be created.
Our approach uses free-form deformation (FFD) [SP86] as
an alternative non-terminal object to overcome this draw-
back.

Having footprints of buildings as a starting point, wall
grammars can be used to create 2.5D facades [LG06]. Fur-
ther research has also shown that splits [HBWO06] can be
used to automatically create the interior of buildings. Al-
though several of the mentioned works use parameters to
create dynamic content, they never take advantage of the
procedural modeling in the sense of reusable structure pat-
terns. In this paper, we introduce modules defining abstract
structure templates by using non-terminal symbols as user
parameters.

Combining different aspects, a visual framework was pro-
posed by Ganster et al. using a model graph as representation
for the scene generation [GKO7]. In grammar based systems,
previous work also showed a way of making local changes
in the scene which is essential for artists creating individual
features in their models [LWWOS]. Tags at the operators and
different locators are defined outside the grammar to spot a
range of elements during the scene generation in order to
let the rules behave differently on these located instances.
In contrast to their work, we present the concept of flags to
achieve local changes which are directly integrated in the
grammar.

A number of other approaches address automatic scene
creation like a stack-based programming language for gen-
erative geometry [GML], using noise for terrains [EMP*02]
or taking a volumetric representation as a basis for modeling
solids [CDM*02]. Other methods apply the idea of procedu-
ral modeling to the destruction of objects [MGDHO04].
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Regarding these different approaches, G? aims for the
combination of several modeling strategies. As recently
stated by Vanegas et al. [VAW*(09] any Turing complete lan-
guage like Python could be used to model an arbitrary scene,
but a modeling language should create a well balanced rela-
tion between its expressiveness and its usability. Therefore,
we make use of several non-terminal classes where each
class encapsulates one modeling strategy. We will see, that
this idea turns out to be both expressive due to its easy ex-
tensibility and simple because of the human readable syntax.

2. System Features

Context-free formal grammars typically consist of a set of
non-terminal symbols N, a set of terminal symbols 7 and a
set of production rules N — (NUT)*. Additionally, there is
always a specific non-terminal symbol § € N that acts as the
start symbol. In a given sequence of symbols, a rule takes all
non-terminal symbols that are equal to the left-hand side of
the rule and replaces them by the new sequence of symbols
that is given on the right-hand side of the rule.

Applying this idea to the modeling of complex scenes,
some objects in the scene might have a non-terminal symbol
attached to it. To state this more clearly, the non-terminal
symbols are used to associate an object in the scene with a
rule of the grammar. We refer to non-terminal objects when
scene objects with an attached non-terminal symbol have to
be addressed. Additionally, each non-terminal object is an
instance of a specific non-terminal class which defines the
object, e.g. non-terminal boxes are defined by their size.

Since non-terminal objects are supposed to be modified by
the grammar, the rules contain a sequence of operators which
can be interpreted as terminal and non-terminal symbols of
a formal grammar. The only difference is, that operators en-
capsulate a certain modeling concept within its non-terminal
class, e.g. non-terminal boxes can be resized or splitted along
a local axis. Operators which only change the state of the
current non-terminal object (e.g. resizing a box) can be in-
terpreted as terminal symbols. Operators which create new
non-terminal objects in the scene (e.g. splitting a box) can be
seen as non-terminal symbols. Newly created non-terminal
objects will take the current non-terminal object as their par-
ent thereby creating an instance hierarchy leading to a scene-
graph.

G? provides explicit user parameters that can be declared
in each rule. In contrast to parameteric formal grammars
[PHHMO97], in our case, parameters can also contain non-
terminal symbols. This extension as well as our definition of
modules enables the creation of abstact structure templates.
We already stated that each non-terminal class has implicitly
declared attributes which describe the non-terminal object.
Similarly, each operator in that class has implicitly declared
attributes which contain information about its modeling con-
cept. These implicit attributes can be easily accessed within
our grammar.
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2.1. Classes and their Attributes

In contrast to previous work, we introduce non-terminal
classes which provide different modeling concepts. There-
fore, the rules in Figure 2 have to be of a specific type since
the operators of each rule can only be applied to a certain
kind of non-terminal object. For example the class of the
non-terminal box behaves similar to CGA shape by giving
simple transformations or providing the repeat and split op-
erators for a structured build-up of the scene. In contrast to
that, FFDs provide operators to manipulate its control points.
All the classes contain some implicitly declared attributes,
which describe the non-terminal object. A box, for exam-
ple, has the three attributes sizex, sizey and size; whereas a
FFD stores the 3D positions of all its control points cyy; with
x,y,z € {0,1}. These attributes can then be used for further
calculations as seen in rule A of Figure 2.

A:Box
sizey : Float,
—

size, : Float,
size, : Float

B:Box B:Box C:FFD(a:Float=1.0)
size, : Float, size, : Float, cooo : Point, cooy : Point,
size, : Float, sizey : Float, co10 : Point, co1y : Point,
size, : Float size. : Float ¢100 : Point, ¢y : Point,

! ! ci10 : Point, c¢111 : Point

A:Box-> size(2.0,2.0,1.0); repeatX(1.0,B);
moveX (2.0); breadth(size,/4.0); spawnFFD(C(1.0));
B:Box-> renderMesh ("Geometry.obj");
C:FFD(a:Float)-> moveControlPoint(1,0,1,a,0.0,0.0);
moveControlPoint(1,1,1,a,0.0,0.0);
renderMesh ("Geometry.obj") ;

Figure 2: Application of different rule types depending
on the class of the non-terminal objects. Rule C provides
an explicit parameter declaration, whereas rule A uses the
implicit declared parameter sizex of the non-terminal box
which contains the current breadth. The upper right image
illustrates the resulting geometry.

2.2. Operators and their Attributes

Operators are defined within each non-terminal class. Some
of them create several new non-terminal objects, which can
not be distinguished in some cases since they are associated
with the same rule. Although this is the advantage of the
procedural technique, because we apply only one rule to a
bunch of new non-terminal objects, it is a drawback at the
same time since repetitive structures are created. Therefore,
those operators have to provide some kind of meta informa-
tion through implicitly declared attributes while producing
new non-terminal objects. Figure 3 outlines this concept by
using an implicitly declared attribute index of the repeat op-
erator.
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Modeling Concept Of Operator: 30

—> — > 1
repeatX height

X Ho1010
Using Operators Attributes:
A:Box

B Box(h:Float=1. 0) B:Box(h:Float=2. 0 B Box(h:Float=3. 0

' w : Float, h

) (

F:Box (w:Float,h:Float,T:Box)-> repeatX (w, :3);
{

A:Box-> repeatY (h,@T);
}

//Usage:
A:Box-> spawnBox (F(2.0,3.0,B));
B:Box-> -+ Further suk eat dows

ﬁﬁﬁ

A:Box-> repeatX(1l,B (index))
B:Box (h:Float)-> helght(h); renderBox () ;

Figure 3: Using implicitly given information of the operator
in order to get different results for each created non-terminal
object.

F:Box (w:Float,h:Float)-> repeatX(w, :A4);
{

A:Box-> repeatY (h,B);

B:Box-> - - Further subrules create window
}

Figure 4: Modules are used to avoid parameter propagation
and to encapsulate several rules into one unit. Please note,
that in this example the rules A and B belong to the module
F. We use the colonin ": A" in order to refer to a subrule and
therefore, we do not need to explicitly pass the parameter h
to subrule A since it is defined in the parent module.

2.3. Dynamic Modules

As already mentioned, parameters are only declared in the
scope of one rule and thus avoid dependencies to keep the
grammar clear. The drawback of this convention is that pa-
rameters have to be propagated when they are given at an
early stage of the evaluation process, but have to be used
several rules later. In order to prevent parameter propagation
we introduce modules (cf. Figure 4), which are rules encap-
sulating several subrules. For example, we want to create a
dynamic facade by using the approximative tile width and
height.

We can simply create a module that takes the width and
height as parameters. Within the module several rules are
applied for the structure. Normally, we would have to prop-
agate the given height and width until they are used. Within
the module, this is not necessary anymore, since we can di-
rectly read-only access these parameters in any of the sub-
rules.

Figure 5: Non-terminal symbols are used to define abstract
structure templates. The @ sign states, that the called rule
is a non-terminal provided by a parameter and not a defined
rule within the current module.

Set1 | Set2 Set 3

S—A S—A S—C (A, B) C(X,Y)—XC(X,Y)X
A—aRa|lA—aRha|S—C(A,C) C(X,Y)—D(Y)
A—B A—B A—a D(Y) —YD(Y)Y
B—bBb|B—rcBc|B—b D(Y) —Y
B—Db B—rc C—rc

abbba | accca abbba or accca

Figure 6: Production rules with a set of non-terminal sym-
bols {A,B,C,D,X,Y}, a set of terminal symbols {a,b,c} and
the start symbol S. The last row shows a possible resulting
string.

2.4. Abstract Structure Templates

Modules are a good choice for enclosed, dynamic, proce-
durally generated objects in the scene, but the concept can
be further extended by allowing non-terminal symbols as
parameters. This creates abstract structure templates which
can be reused at several places in the grammar. We use the
term abstract since the evaluation of such templates does
not yield a stand-alone object. The user has to pass non-
terminal symbols for further evaluation. Regarding the last
example (cf. Figure 4), we can create a module that just cre-
ates the grid tiling ignoring of what will be generated within
the tiles. Figure 5 illustrates the use of non-terminal symbols
as parameters.

By using abstract structure templates, rule explosion can
be prevented in a more effective way. For illustration take
a closer look at some sets of production rules in a string
rewriting system (cf. Figure 6). The first two grammars of
Figure 6 create similarly structured sequences of terminal
symbols. To achieve this the whole grammar has to be du-
plicated and only the generated terminal symbols have to be
exchanged in the grammar. Instead of this, we could create
an abstract rule set such as grammar 3. By calling rule C with
different non-terminal symbols we always achieve the same
global structure but the resulting elements can still be fur-
ther replaced. In this example, we only demonstrate how to
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create the resulting strings of the first two grammars, but any
non-terminal symbol could be used. This includes any other
combination of already available non-terminal symbols (e.g.
S—C (B, C) ) and even other complex rule sets could be ap-
plied that generate new sequences of terminal symbols (cf.
Figure 16).

2.5. Flags

The concept of flags makes local changes in the scene very
easy. By convention undefined flags are associated with the
value "false". A flag can be set to "true" whenever a new
non-terminal object is created by a rule and it will be valid
for the whole subtree that emerges from it, e.g. we do not
need to pass the flag explicitly. Please note, that they differ
from common explicitly declared local parameters, since a
flag can either be defined at some certain non-terminal ob-
ject within the scenegraph or not. In contrast to that, even a
boolean variable would have three states, namely true, false
or undefined. We prevent undefined variables or parameters
by defining them explicitly within the rules. This is neces-
sary, because if variables would also be available for a whole
subtree there might occur dependencies between the rules.
Some rule could want to read a variable that has never been
created by the previously evaluated rules. Figure 7 shows
the scope of the flags. Just like in CGA shape, rules can
have conditions. Checking the defined flags within a con-
dition allows for using other operations on a specific subtree
to achieve local changes.

Flag
Flags
Flagi & Flags

B:Box-> repeatY (3.0,C[If in

C:Box-> - If Flag, and Flagy are set, create a door.
Otherwise create a window.

Figure 7: Flags are used to apply local changes in the
scenegraph. The green subtree has set Flag, whereas the
red subtree has set Flagy. The red and green subtree has
both flags set, since Flag| was set by an early used operator
and later another operator has set Flag,.
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3. Derivation of a modeling language

In this chapter we derive our grammar from a general pur-
pose language. We have chosen Python, since it already pro-
vides functional programming concepts which makes the ex-
ample code of this section much easier. For later usage, we
define N as the number of different non-terminal classes,
O; as the number of operators in non-terminal class i, where
i€{l,...,N'} and R as the number of rules that are defined
in the grammar.

3.1. Basic Hierarchy

For completeness reasons we start the derivation by defin-
ing the base objects for building the scenegraph. Each object
has one parent within the scenegraph and a transformation
matrix that is relative to its parent (Figure 8).

class :

def __init__ (self):
self.parent = None
self.transformation = Matrix4x4f ()

Figure 8: Basic class for all objects in the scenegraph.

For the derivation we will only take into account the non-
terminal objects, since these instances have to be controlled
by the grammar. Figure 9 makes clear that the non-terminals
can be seen as group objects within the scenegraph, because
rules working on them can create new child objects. Flags
are recursively checked in the parent non-terminal objects
returning true, if it is defined and false otherwise.

class ( ):
def _ init__ (self):
~ init_ (self)
self.children = []
self.flags = []
def addChild(self, child):
child.parent = self
self.children.append (child)
def checkFlag(self, flag):
if flag in self
return Tru
if self.parent:
return self.parent.checkFlag(flag)
return False

Figure 9: Non-terminals build up the hierarchy.

3.2. The System

The grammar makes use of implicitly declared attributes that
are defined for classes and operators (cf. Sections 2.1, 2.2).
From the systems point of view the attributes of the classes
are local variables that are declared in NTClass;. The at-
tributes of an operator are represented by a dictionary within
operator; in order to make them accessible in the grammar
as we will see in a moment (cf. Figure 10).

class NTCL
def

Figure 10: Non-terminal types that exist in the system (j €
{1,....,0;}andi€ {1,....N'})
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As an example class we will introduce the non-terminal
boxes (cf. Figure 11). The box contains three class attributes
that define its size. A height operator is available that simply
sets the size of the box along its local y-axis.

The most interesting part of this code snippet is the
argument create_non_terminal_box of the repeat operator.
Python provides functional programming concepts, namely
lambda functions. Since we use class derivation for the
association between rules and non-terminal objects, cre-
ate_non_terminal_box is a lambda function creating a rule
that has to be derived from the class N7 Box, because the re-
peat operator creates new non-terminal boxes and initializes
them with the calculated size and position. Passing the op-
erator attributes oa to this lambda function enables us to use
them within the grammar.

class (NonTerr )
def init(self, x, y, z):
s = x

y
= z
def height(self, v):
self.size y = v
def repeatX 1f, size, create_non_terminal_box) :
oa = {’index’=0,’steps’=round(self.size_x/size)}
new_width = self.size_x / oa[’steps’]
transformation = self.transformation.clone ()
for oa[’index’] in range(oa[’steps’]):
new_nt = create_non_terminal_symbol (oa)
new_nt.init (new_width,self.size_y,self.size_z)
self.add_child(tmp_nt)
new_nt.setTransformation (transformation)
transformation.translateXLeftSelf (new_width)
enqueEvaluation (new_nt)

Figure 11: An example of a non-terminal class. A non-
terminal box is defined by its size along each local axis. Op-
erators are defined as functions within the class. They are
later called by the grammar in order to perform any modi-
fication on the non-terminal object itself (e.g. height) or to
spawn new non-terminal objects in the scene (e.g. repeat).

3.3. The Grammar

This section covers the background of the grammar, i.e. how
the Python code has to be designed in order to fit our model-
ing purpose. Please note, that the Python code explained in
this section does not need to be written by the user, because
a parser will create it from the well-defined syntax which
is introduced in Section 3.4. Rules of the grammar are de-
fined by class derivation of a specific non-terminal class (cf.
Figure 12). The explicitly declared parameters of a rule are
stored locally in order to make them available for any sub-
rule. A subrule can access such a parameter by just following
the references to the parent module (pm).

class ep (N )
def _ init_ (self, pm, py=vy, =, Pp=Vg,):
[ .__init__ (self)
self.pm = pm
self.py = py #Va € {l, kn}

def evaluate (self):
fuser d r equence of ope

Figure 12: Rules that are created by the user in the gram-
mar (h € {1,...,R}). Notice, that p; can contain any pa-
rameter values including lambda functions. The v; denote
the default values which are assigned to the parameters.

Most important part of the rules is the evaluation function.
The user can apply any operator to the current non-terminal
object by just calling a certain function of the system, i.e. an
inherited function of the specified non-terminal class. Figure
13 shows an example of a simple grammar that just splits
a non-terminal box along the x-axis. The example clearly
demonstrates that lambda functions are an easy way to make
implicit operator attributes accessible in the grammar (e.g.
the current index of the repeat operator).

class Rule_S( ):
def evaluate (self):
self.size(10.0, 1.0, 0.1)
self.repeatX (1.0, lambda oa: Rule A(oa[’index’]))
class Rule A( )
def _ init_ (self, index):
.__init__(self)
self.index = index
def evaluate(s
self.trace ("

" + str(self.index))

Figure 13: Example of a grammar that splits a box along
the x-axis. The resulting boxes will have a width of 1.0 and
the associated rule will print its index.

Passing a non-terminal symbol as parameter can be
achieved analogously, i.e. a lambda function of the following
form is passed as parameter:

lambda *parameters: Rule_Target (parameters)

Note, that the parameters are propagated to our target rule
in this case, because the abstract structure template could
also pass some parameter values to the given rule.

3.4. The Syntax

The syntax of our grammar is very close to CGA shape as
seen in Figure 15. In contrast to their approach, our rules and
parameters have to be of a specific type. Another difference
is, that we define rules, which have a unique name within its
module, where a module is just defined as a rule that has sub-
rules. Please note, that parameters can be overloaded within
the subrules. Each rule has a block of conditions, where each
condition has a set of operator sequences.

SRule:Type ( parametery :Type, * -+
[ condition, ]
< probability; , > -> Us

» parametery:Type)

1 sequence of operat

;probabilifyl_,, > ->

[condition,, ]
< probability,, 1 > -> User defined sequence of operators

< probability,. , > -> ed sequence of operators

Figure 15: Syntax of our grammar. Similar to CGA shape,
we provide the use of parameters, conditions, and probabil-
ities.

The evaluation process will now be as follows. Whenever
a new non-terminal object is created, we check the defined
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$WallCornice:Box-> renderGeometry ("Cornice.obj");
cornerFFD(45.0, S$LeftCorner);
SLeftCorner:FFD-> renderGeometry ("Cornice.obj");

$WallCornice:Box-> renderGeometry ("Cornice.obj");
latheFFD(45.0, 2.0, $LeftCorner);
SLeftCorner:FFD-> renderGeometry ("Cornice.obj");

Figure 14: The left three images show a typical example of cornices going aroung an edge. In the second image, a new geometry
has to be loaded in order to cover the sharp edge. In contrast, the third image shows that two FFDs solve the problem and that
the geometry, used for the cornice along the wall, can be reused for the corner. The right three images show the creation of
rounded edges by creating several FFDs. The given grammars correspond to the third and sixth image respectively. In both
cases we cover an angle of 45 degrees. The whole angle of 90 degrees will be covered, since we apply this rule from both sides.
When polygons are used as floor plans, the angles will be given as implicit operator attributes (cf. Figure 19).

conditions of the associated rule sequentially. The operator
sequences of the first condition that evaluates to true will be
selected. Please note, that empty condition brackets always
evaluate to true to serve as a default case. We will randomly
choose one of the operator sequences belonging to the se-
lected condition based on the given probabilities. Those are
either defined in the range [0.0,1.0] or they are left empty.
They are not allowed to sum up more than 1.0. All operator
sequences of the same condition x without probability will
calculate their probability as (1.0 — Y7, probability.;)/n
where missing probabilities count as zero and n denotes the
number of missing probabilities.

The formal definition to reference a rule for further eval-
uation is done by the following expression:

Prefix$Rule (expy,...,exp,) [cond) : flagy,...,condy : flagy]

non

The prefix can be either ":" to call a subrule, "_" to call
a root rule which belongs to no module, "@" to use one
of the non-terminal symbols which are given in an explicit
parameter or "../---../" to access a subrule of any parent
module. Since the applied rule might have defined some pa-
rameters, we can pass that many values by using arbitrary
expressions. We have seen in Sections 2.1 and 2.2, that both
classes and operators have attributes, which are implicitly
given in the grammar. In order to avoid name clashes we use
a different prefix for accessing those attributes. For exam-
ple, if we want to access the current breadth of a box, like
in Figure 2, we can use Class.sizex whereas if we want to
access the current index during the non-terminal object cre-
ation of the repeat operator, as seen in Figure 3, we have
to use Operator.index. Flags are also implicitly given in a
subtree of the scenegraph, so that we have to use an addi-
tional prefix in this case. For example in Figure 7 we could
just use Flag.Flag)&&Flag.Flag, as a condition in order
to perform the demonstrated local change of placing a door
in the respective tile.

"non
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4. Use Case: Architectural Modeling

In this section, we introduce some non-terminal classes
which are suitable for the generation of architectural geome-
try. As already mentioned, modules can act as structure tem-
plates by taking advantage of non-terminal symbols as pa-
rameters or they just build a unit to generate a dynamic ob-
ject in the scene. Therefore, the modeling strategy will be as
follows:

1. Create different details by defining dynamic modules
(i.e. windows, doors, decorations, etc.)

2. Create abstract structure templates for coarse layouts
(i.e. modern, old, etc.)

3. Combine structures and details

4. Use flags for local changes of structures or details

Before we start the modeling of a facade, we introduce
several operators. By following the CGA shape convention,
we are able to use the component, repeat, split and transfor-
mation operators in a similar manner. In order to make cor-
nices go around corners of buildings, non-terminal FFDs are
created. Taking advantage of this deformation we are able
to reuse the same geometry that was already placed on the
wall of the facades (cf. Figure 14). There are currently two
methods supported by our system to handle geometry in the
case of a building corner. On the one hand, we can define
a FFD to create sharp corners. This is done by taking the
base xy-rectangle of a non-terminal box and extending one
edge along the local z-axis. The result will be a prism shaped
FFD that covers half of the given angle. On the other hand,
our system provides an operator that creates several FFDs
in order to approximate a round shape. It also takes the xy-
rectangle of a non-terminal box and uses the local y-axis for
the rotation. The operator needs the total angle and an ap-
proximative angle for each step. The calculation of the real
angle for each segment is done analogously to the repeat op-
erator. Figure 14 illustrates the operators for round and sharp
building corners.
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Figure 16: Stepwise creation of the abstract structure template presented in Figure 17. First, we create different parts of the
facade (a). Then, we split the middle part into the floors as well as the bottom floor into three parts in order to get a segment for
a door (b). Finally, we create the cornices where the height of each cornice is related to the floor height by some given cornice
ratio (c). We also create tiles as window areas in each floor. Images (d) and (e) show the usage of different dynamic modules

based on our abstract structure template.

$AbstractFacade:Box (th:Float, mh:Float, bh:Float,
cr:Float, la:Float, ra:Float, d:Bool,
$CorniceCorner:FFD, $CorniceWall:Box,
SWindowTile:Box, $DoorTile:Box)
Split the box into the coarse features, i.e. bottom, middle and top floors. The
split operator can be understood analogously to CGA shape. Therefore, each
tuple uses a 0 to declare an absolute part and 1 to specify a relative part.
->splitY ([ (bh, 0, :$BottomFloor[BF]),
(1.0, 1, :$MiddleFloors[MF]),
(th, 0, :$Floor(la, ra)[TFl)]1);

If we use a door, split the bottom floor. The left and right floor parts will not
have a corner at the door side, so we use an angle of 0.0 degrees in this case.
$BottomFloor:Box
[d]->splitX([(1.0, 1, $Floor(la, 0.0)),
(1.8, 0, @$DoorTile),
(1.0, 1, $Floor (0.0, ra))l);
[] ->spawnBox ($Floor (la, ra));
The middle floors should all have approximately the same height of mh meters.
$MiddleFloors:Box->repeatY (mh, $Floor(la, ra));
We overload la and ra internally in order to skip the corners beside the door tile.
$Floor:Box (la:Float, ra:Float)
->splitY ([ (Class.size_y*cr/2.0, 0, :$Cornice[2C]),
(1.0, 1, :$Tiling),
(Class.size_y*cr/2.0, 0, :$Cornice[TC])]);

The cornice will have the same depth as height. Further proceed with the
left (0) and right (1) faces of the box
$Cornice:Box
->depth (Class.size_y);
compFace ([ (0, $CreateCorner (la)),
(1, $CreateCorner(-ra))l);
spawnBox (@$CorniceWall) ;
Create the FFD corners with the given angle. If the angle is negative, we
create the right corner.
$CreateCorner:Box (a:Float)
[a > 0)->cornerFFD(a, @$CorniceCorner);
[1 ->tX(Class.size_x); rY(180);
cornerFFD(a, @$CorniceCorner);
All window tiles should all have approximately the same width of 1.8 meters.
$Tiling:Box->repeatX (1.8, @$WindowTile);

}

Figure 17: Practical use of an abstract structure template.
The first three parameters define the height of the top (th),
middle (mh) and bottom (bh) floors. This is followed by a
cornice ratio (br), the left (la) and right (ra) angle for the
edges of the cornices and a boolean, if we want to use a
door (d). The last four parameters are non-terminal symbols
for further evaluation. Note, that this abstract structure tem-
plate also sets some flags to distinguish the tiles for the top
(TF), middle (MF) and bottom (BF) floors as well as the top
(TC) and bottom (BC) cornices. The flag color referes to the
Figure 16(c).

$Facade0Ol:Box(la:Float, ra:Float, d:Bool)
->spawnBox (_$AbstractFacade (2.5, 2.8, 3.2,
0.2, la, ra, d,
:$CorniceCorner, :$CorniceWall,
:$WindowTile, :$DoorTile)) ;

$CorniceCorner:FFD

[Flag.TC]-> renderColor (1, 0, 1);
[Flag.BC]->
$CorniceWal

[Flag.TC]-> r
[Flag. 1->
$WindowTile:Box
[Flag.TF]->
[Flag.MF]-> renderColor (0, 1, 0);
[Flag.BF]-> renderColor (0, 0, 1);
$DoorTile:Box->

Figure 18: Simple application of the abstract structure tem-
plate of Figure 17 in order to create Figure 16(c).

Load a city map and associate a mesh rule with it.
$S:Box->size(100.0, 100.0, 0.0);
spawnMesh ($CityPlan, "CityPlan.obj");

Decompose the mesh into its polygons

$CityPlan:Mesh->compPoly ($FloorPlan) ;

Extrude the polygons by placing boxes at the lines. The width equals the length

of the line, the height is taken from the extrude operator (10.0) and the depth is

degenerated to 0. In order to let the facade cornices fit perfectly well along the

building edges, we use the outer angles of the polygon. Note, that the gap at the

corners is 180 degrees less than the outer angle itself. A door will be placed within

the first side of the extruded polygon (Operator.index == 0)

$FloorPlan:Polygon->extrude (10.0, $Facade0l (Operator.la / 2 - 90,
Operator.ra / 2 - 90,
Operator.index == 0));

Figure 19: Using the facade of Figure 17 on several floor
plans. Please note, that the extrude operator provides the
outer left (Operator.la) and right (Operator.lr) angles of the
current line as well as the current index (Operator.index) as
implicit attributes while creating the different sides as non-
terminal boxes.

Once the user has created several dynamic modules (cf.
Figure 20 for some examples), he is able to reuse them in a
given abstract structure template. Therefore, we take a closer
look at an example creating an abstract structure template of
a simple facade in Figure 17. We use comments to explain
the code snippet as well as a sequence of images in Figure
16 to illustrate different stages of the evaluation.
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Figure 20: Several dynamic modules, which will change
their appearance on different input values.

After the creation of abstract structure templates and other
dynamic modules, we are able to combine them. In Fig-
ure 18 we just draw different colored boxes and FFDs in
order to visualize different parts that are created by the
AbstractFacade rule. Instead, we could use any dynamic
module to create the details. This could, for example, result
in the the last two images of Figure 16. Please note, that pre-
vious approaches would need to copy the AbstractFacade
rule for each combination of different windows, doors or cor-
nices. In contrast, our abstract structure templates allow for
keeping the rules untouched and reusing them several times.

In order to generate a building or even an entire city, we
are able to load non-terminal meshes which can be seen as
the floor plans. A component operator will disassemble the
mesh and spawn a non-terminal polygon for each face. At
this point we can easily extrude each polygon by spawning
non-terminal boxes for the sides which are zero scaled along
the z-axis (cf. Figure 19). In general, this method can be un-
derstood analogously to the component split of CGA shape,
except that we distinguish different geometric objects by the
non-terminal classes. The advantage of our system is here,
that special operators could be defined for those geometry
classes, e.g. a triangulation operator for non-terminal poly-
gons or a subdivision operator for non-terminal triangles.
These examples clarify, that the distinction of non-terminal
objects by different classes is an substantial feature if the
system is supposed to be easily extendable in order to make
it fit to other modeling domains.

5. Use Case: Plant Modeling

In contrast to architecture, plants are generated by simulating
a growth process. Our approach takes the idea of generalized
cylinders as they are used by Prusinkiewicz et al. [PL96]
and transfers this concept to a controlled creation of FFDs.
Therefore, our basis is also a LOGO-style turtle that can roll,
yaw, pitch and move forward.

With generalized cylinders the user can insert a new con-
trol point for the creation of a Bezier curve at the current
position and orientation of the turle. Since we are using
FFDs for the deformation of geometry, we adapt this idea in
the following way. At each position we can specify a given
width and height which states the size of a cross-sectional
rectangle that is orthogonal to the forward vector. At any
point we can specify, that the current rectangle will be used
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Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

p.C

$S:Box->size(3,2,0); spawnFFDTurtle($Yaw);
$Yaw:FFDTurtle->forward(2); yaw(-25); setFront();

renderColor (0,0,1); spawnFFDTurtle ($Forward);
$Forward:FFDTurtle->forward(0.5); setFront(); renderColor(l,1,1);

Figure 21: Turtle FFDs: We first set the size of the turle to a
width of 3 and a height of 2 using this rectangle as the back
of the current FFD. Then we go forward by a value of 2 and
yaw (blue), roll (green), pitch (red) the turtle respectively
without changing its size. Using this as the front rectangle
yields the illustrated FFD shapes. The grammar below only
demonstrates the yaw transformation, since roll and pitch
would be created analogously.

Figure 22: Recursive application of rules leads to tree
structures. Please note, that even the branch transitions look
very smooth due to the Turtle FFD principle. In the middle
and in the right image we use a vector pointing upwards as
parameter in order to simulate a growth into the direction of
the sunlight.

as front or back of the FFD as seen in Figure 21. The growth
process can then be simulated by using random values and
recursive application of rules like illustrated in Figure 22. A
simple upward directed vector as parameter can be utilized
to guide the growing direction. Loading geometry that holds
an extruded contour of a certain part of a plant, we can create
similar flowers as generated by L-studio/cpfg as long as they
do not need to simulate the propagation of internal informa-
tion as proposed by Prusinkiewicz et al. [PHL*09].

Using abstract structure templates in plant modeling al-
lows for an easy application of existing grammars by just
combining them (cf Figure 24, Figure 23). Experienced
users with knowledge about plant modeling can provide sev-
eral rules for tree structures, fruits, or leafs whereas begin-
ners just use and combine them to get a variety of trees. Pre-
vious approaches would have to copy the base tree struc-
tures for each possible combination of dynamic modules.
The grammar would become very long and thereby confus-
ing. Furthermore, changes in the base structure would have
to be done in each copy. Our approach of using non-terminal
symbols as parameters serves as a elegant solution to this
problem holding the syntax clear and unambiguous.
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Figure 23: These images demonstrate the usage of abstract structure templates in plant modeling. (a) A small rule set defines
a basic tree structure. (b-d) Dynamic modules serve for the creation of leafs, apples, pears and petals which are passed as
parameters to the basic tree. This enables various combinations by just changing a few non-terminal symbol parameters in the

grammar (cf. Figure 24).

Experienced users create abstract structure templates of trees as well as dynamic
models of fuits ana S.

$BaseTree:FFDTurtle ($Leaf:FFDTurtle, $Fruit:FFDTurtle)-> - - -
$Leaf :FFDTurtle-> -«

SPetal :FFDTurtle-> =« -«

SApple:FFDTurtle-> =« -«

SPear :FFDTurtle-> =« -«

Beginners benefit of abstract structure templates and dynamic modules, since they
only need to combine different grammars without understanding them in detail.
$AppleTree:FFDTurtle-> spawnFFDTurtle ($BaseTree ($Leaf, $Apple));
$PearTree :FFDTurtle-> spawnFFDTurtle ($BaseTree ($Leaf, $Pear));
$PetalTree:FFDTurtle-> spawnFFDTurtle ($BaseTree ($Leaf, $Petal));

Figure 24: Creation of various trees by combining abstract
structure templates and dynamic modules in plant modeling.

Fig. Eval. Rendering | Triangles Inst.
25 left 27 ms 15 ms 276226 11035
1 267 ms 98 ms 1346280 | 58653
26 1272 ms 520 ms 6914247 | 281607
23 top | 2443 ms 1005 ms 3114704 | 556629

Table 1: The evaluation time is related to the generation of
the whole scene. Additionally, we list the rendering time, the
number of triangles, and the number of instances.

6. Implementation

In order to demonstrate the integration into professional 3D
animation software, we provide a little script package in
Python related to this paper [Genl0]. We chose Houdini
from Side Effects Software [Hou09], which suits perfectly
well on our procedural modeling approach.

For runtime measurements, we use the C++ version of our
system which is much faster. This leads to very fast scene
assembling, since all the changes result in a direct visual
feedback. Some statistics of the grammars that are shown
throughout the paper are listed in Table 1. We run our appli-

cation on a Intel Core i7 with 2.67GHz with 6 GB ram and
a GeForce GTX 285 with 1 GB ram. Since our application
is not parallelized so far, we only utilize one of the cores.
Additionally, the rendering is currently not optimized, i.e.
we issue as many draw calls as instances in the scenegraph.
This bottleneck could be solved by uploading the geometry
to the graphics card before rendering it.

7. Discussion

Expressiveness — A general disadvantage of procedural
modeling is, that it is usually limited to one specific mod-
eling domain. Since our language provides several non-
terminal classes, we are not restricted to a certain model-
ing concept. The advantage of this method is not only that
different use cases are covered, but that they can be com-
bined as seen in Image 1. This opens a whole range of new
possibilities for a dynamic scene creation. We currently only
use 6 non-terminal classes (i.e. Box, FFD, FFDTurtle, Mesh,
Polygon and Triangle), but the system could easily be further
extended by new classes such as spline curves or NURBS
surfaces. We also applied our grammar to the reconstruction
of different object types as seen in Figure 25.

Local Changes — During the creation of an abstract struc-
ture template, flags are a simple way to partition the different
created non-terminal objects. If the designer of the template
also provides an example with a color scheme like seen in
Figure 16(c), the flags can be utilized easily.

Real-time Rendering — All images in this paper are ren-
dered with our real-time application. Since we currently
have no level-of-detail techniques implemented, the fram-
erate may drop in cases of massive scenes (cf. Figure 26).
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Figure 25: The left two examples show the reconstruction of a real building that we created with our grammar. Please note,
that the round hallways are also generated by the system using FFDs and that the details are dynamic objects that build a unit
within the grammar. Therefore, the windows on each floor are based on the same module, but called with different parameters.
The right Figure shows that our FFD approach is well-suited for the creation of plants. In this case we modeled a lily analogue

to the algorithms presented by Prusinkiewicz et al. [PKMHO0O].

Usability — The learning curve of our grammer is similar to
that of scripting languages. The human readable syntax sup-
ports the designer to understand grammars of other persons
very fast. Especially, dynamic modules and abstract struc-
ture templates serve as a good interface for shared work,
because they are closed units. Other designers do not need
to analyze the whole grammar for variables, which have
to be set when using a specific rule, since we do not have
parameter dependencies between the rules. Writing com-
plex grammars can still take a while, even for experienced
users. For example creating the base structure and all mod-
ules (windows, doors, cornices), used throughout the images
of Figure 16, took approximately 1 hour. In contrast, using
non-terminal symbols as parameters brings the combinato-
rial possibilities to a whole new level. Even beginners are
now enabled to combine nontrivial structures and dynamic
modules within seconds thereby creating complex scenes.

Limitations — Currently, our system does not provide any
geometric queries. In general, this could be achieved nearly
analogously to CGA shape, i.e. using the conditions to query
any generated geometry. In order to get the queries more
performant, CGA shape can be restricted to only checking
intersections between bounding boxes. From this point of
view, queries become a little bit more complex in our system,
since a non-terminal class could represent any geometrically
meaningful object. For example, intersections with any free-
form deformed object could be checked by first using only
the convex hull of the FFDs.

Currently, we are limited to trilinear FFDs, since our C++
version of the system uses the vertex shader of the graph-
ics card to apply the deformation in real-time, although the
scenes might consist of several thousand FFDs. We also ex-
perimented with FFDs of higher degree, but we found that
trilinear FFDs are sufficient for our use cases; especially, if
low resolution polygon geometry is loaded, any high resolu-
tion FFD would not contribute to the quality of the resulting
geometry unless the geometry itself is subdivided. Instead,
using the low resolution polygon geometry in several trilin-
ear FFDs, which share a common face, serves for a similar
effect when rounded objects have to be generated.
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8. Future Work

In future work, we would like to extend G> by other non-
terminal classes which address different modeling scenarios
reaching from detail creation like furniture to the generation
of massive scenes which include nature and man-made arti-
facts. Furthermore, attaching semantic information to gener-
ated objects could help to create even more abstract gram-
mars, e.g. an ivy grammar only needs to know that it can
climb along a stone surface, no matter if it is part of a fa-
cade or if it is a stand-alone wall. Another extension could
be to interchange signals between the created non-terminal
objects, e.g. a plant hits a wall during its growth process;
this could trigger a signal event within the wall in order to
modify it at a certain position.

9. Conclusions

This paper presents G?, a novel procedural modeling lan-
guage combining the generative power of shape grammars
with common modeling concepts. We introduce the idea
of having several non-terminal classes in order to encapsu-
late different modeling strategies like working with boxes
or free-form deformations. Abstract structure templates are
presented allowing for well-defined non-terminal object ar-
rangement of more complex patterns. Local changes can also
be applied by adding flags during the scene creation. We
combine these concepts in a grammar with a human readable
syntax, which makes the modeling process very intuitive.
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