OpenFlipper: An Open Source (Geometry
Processing and Rendering Framework

Jan Mobius and Leif Kobbelt

Department of Computer Science 8,
RWTH Aachen University,
Ahornstrasse 55, 52074 Aachen,
http://wuw.graphics.rwth-aachen.de

Abstract. In this paper we present OpenFlipper, an extensible open
source geometry processing and rendering framework. OpenFlipper is a
free software toolkit and software development platform for geometry
processing algorithms. It is mainly developed in the context of various
academic research projects. Nevertheless some companies are already
using it as a toolkit for commercial applications. This article presents
the design goals for OpenFlipper, the central usability considerations
and the important steps that were taken to achieve them. We give some
examples of commercial applications which illustrate the flexibility of
OpenFlipper. Besides software developers, end users also benefit from
this common framework since all applications built on top of it share the
same basic functionality and interaction metaphors.

Keywords: Geometry Processing, Software Framework, Open Source

1 Introduction

Currently a lot of work is being done to simplify the research and development in
the field of geometry processing algorithms. Results of this work are for example
the software frameworks Meshlab [2] or Graphite [3]. Most of these frameworks
have two major limitations.

On the one hand, they focus on one special type of geometric primitives,
namely triangle or polygonal meshes. However there are a lot of applications
where multiple types of data are needed, e.g., isosurfaces get extracted from
volumetric data or meshes are generated from point clouds. Therefore these ap-
plications only focus on parts of the overall geometry processing pipeline. More-
over types like subdivision or spline curves and surfaces are often not supported
by these frameworks and thus reduce their versatility. On the other hand, the
applications are usually published under the GPL [4] and are therefore not us-
able in industrial projects leaving out another large group of potential users and
contributors.

Our main goal is to provide a common software development platform for
the majority of the geometry processing community. Researchers should be able
to use the framework to significantly speed up development and focus on the

2 Jan Mobius and Leif Kobbelt

actual research project as most basic functionality is readily available. Industry
should obtain a common platform to build their software upon while end users
benefit from a unified look and feel for all algorithms using the framework. This
large user community heavily improves development as existing code from other
people can be re-used and combined to new algorithms.

In the next section we give an overview of our design goals for the Open-
Flipper framework. Section 3 briefly describes its central API. In Section 4 the
currently available features are presented, and in Section 5 OpenFlipper’s script-
ing system is explained. Finally, some examples on how OpenFlipper simplifies
the development process of two projects are given in Section 6.

2 Design Goals

The ultimate motivation for the implementation of a general application frame-
work is that in most research groups various projects are being worked on in
parallel and that a considerable percentage of the functionality is shared be-
tween those projects. Hence the primary goal of a common framework is to
avoid implementation and code redundancy by providing a central repository of
modules, e.g., for user interfaces, data file handling, rendering and others.

Another observation is that throughout the life cycle of a project (or of
an algorithm) different aspects of software engineering become relevant. In the
initial basic research phase, the software framework should allow the programmer
to focus on the algorithm itself and it should provide a test bed in which different
variants of the algorithms can be evaluated.

At a later stage of the development, the implemented functionality needs to
be tested extensively. While the major mode of usage for our framework is that of
an interactive application, extensive testing and repetitive execution of similar
procedures is more effective in some kind of batch mode. Hence our system
comes with a scripting interface that enables the flexible meta-implementation
of control procedures that build on top of the available functionality in the C++
implemented modules.

Finally, we want our framework to also support the dissemination and com-
mercialization of geometry processing functionality. This imposes two additional
requirements at the technical as well as at the legal level. First, the design of
ergonomic and intuitive user interfaces needs to be supported effectively. This
is made possible through the option to implement custom designed user inter-
faces for groups of users with different levels of technical expertise, e.g., software
developer or client users. On the legal level we have to resolve licensing issues
(this is why we have put our framework under the LGPL license) and we have
to offer a mechanism to exchange and license functionality without exchanging
source code.

Our solution to the latter issue is that individual modules are implemented
as plugins that can be loaded (as pre-compiled code) at runtime. The plugins
can access the central functionality through a flexible API that also supports
the communication between plugins. In addition we included a license checker

OpenFlipper: A Geometry Processing and Rendering Framework 3

mechanism into the framework which enables the protection of individual plugins
by identifying the computer on which the program is running.

Our vision is that the OpenFlipper framework will provide a software ecosys-
tem within which an open source community can develop and share their im-
plementations and where there is a seamless transition to and integration with
commercial modules. A research group or company could provide some of their
plugins as open source while for others a user license has to be obtained. Users
can collect their personalized set of plugins satisfying their particular applica-
tion requirements which can consist of a combination of free and commercial
modules.

Currently, the OpenFlipper framework is used intensively in the context of
our computer graphics and geometry processing teaching curriculum since it is
perfectly suited for student projects.

Compared to other mesh processing software frameworks (e.g., Meshlab [2])
the two major distinctive features are (1) the scripting module which allows users
to run OpenFlipper in batch mode and eases the definition of custom tailored
interfaces and (2) the scenegraph structure that can handle multiple objects
(even with different representations) simultaneously.

B . OpenFlipper v1.0RC7

Fle View Tools Backup Database Scripting Help

it
R OME- HAm2 EIVVIV RSS9 2PIPD QA B s

Core Application

Data Management

10 System

[10 nterface][intertaces/Communication

! ! !
|IOP\ug|nsII Plugin I----l Plugin I

|

Rendering I

13726 141172 427.448 O ,

Fig. 1. Left: View of the OpenFlipper interface. It consists of a menu bar and several
toolbars at the top, a configurable set of toolboxes on the right, and a large area for the
viewers on the left. The viewer area can be split into multiple views rendering the scene
with different visualization settings. Every part of the user interface can be extended
and re-designed by plugins. Right: Framework scheme.

4 Jan Mobius and Leif Kobbelt

3 OpenFlipper API

A common design goal for today’s software is cross-platform compatibility. As
a consequence, a user interface library has to be used which must enable plat-
form independent software development. We chose the Qt cross-platform appli-
cation and User Interface framework [11] and adopted our API to some of the
metaphors and concepts used by it.

Qt is based on a signal/slot architecture. Every event, e.g., a mouse click,
results in a signal. Every signal can be connected to an arbitrary number of
slots which are functions to be executed at each occurrence of the event. Events
occuring in parallel are stored in a global event queue and get executed by the
main thread in a serialized order.

OpenFlipper uses this signal/slot metaphor as its internal communication
paradigm. OpenFlipper’s core application communicates with the plugins by
emitting signals and in turn activate functions at their counterpart. The func-
tions provided by plugins or by the core application are grouped into separate
interfaces which are subdivided into user interaction (keyboard or mouse events,
picking), user interface specification (toolboxes, menus), file input/output, ob-
ject modification, texturing, view control and many others. It is not necessary to
implement all functions of an interface, allowing developers to quickly develop
little plugins focusing on certain algorithms. The core application will automat-
ically detect what has been implemented and only the relevant signals will be
passed to the plugins avoiding function call overhead.

OpenFlipper is not bound to a specific type of geometric data. The core
application is independent of the data representation as types are handled via
container objects. These objects provide the rendering code and the actual data
structure as well as functions for setting and retrieving the data. Due to this
representation, arbitrary types can be added by the programmer with little addi-
tional implementation effort. For common data types like triangle and polygonal
meshes OpenFlipper uses the OpenMesh library [1] which is a highly efficient
halfedge based data structure. Additionally, we plan to integrate other com-
monly used data types like the tetrahedron meshes implemented in CGAL [13]
or the volume data acquired with CT or MRI scanners.

The framework does not introduce an abstraction layer between algorithms
and data types. Therefore, developers can directly access the underlying data
structure (e.g., OpenMesh or CGAL) in their plugins. This results in low effort
when porting existing algorithms to OpenFlipper as no code change has to be
made for the algorithms themselves. OpenFlipper provides several iterators to
retrieve objects in the framework. The iterators can be restricted to fetch objects
of a specific data type, e.g., triangle meshes, or to fetch only user selections
when working on multiple objects. After retrieval and modification of the data,
a plugin has to send a signal and the core application will pass the information to
all other plugins and updates the viewers accordingly. It is not the main purpose
of the OpenFlipper framework to provide a library with geometry processing
algorithms. It only provides the framework to use existing algorithms (such as
the excellent CGAL [13] library) and easily test and develop new algorithms in

OpenFlipper: A Geometry Processing and Rendering Framework 5

one system. Nevertheless, the free branch contains already a significant number
of public domain implementations of state-of-the-art algorithms (see Section 4
).

An integral part of the OpenFlipper framework is the rendering. The scene
is represented by an OpenGL-based scenegraph and already provides rendering
functions for the integrated data types. As almost all graphic cards support
vertex buffers we use them for efficient rendering (with cache optimization to
increase speed). OpenFlipper uses shaders for advanced rendering techniques but
also provides fallbacks, if shaders are not supported by the used hardware. For
presentations, the system can render images off-screen with very high resolution.
Additionally we will integrate scene export for ray tracers and Sketch 3D (Latex
code) in a future release. As the system is completely modular, developers can
exchange the rendering for different kinds of data types with their own OpenGL
code.

We also integrated a solution for tracing mouse clicks through the scene. The
scenegraph implements color picking such that mouse events can be directly
mapped to the clicked object or parts of the object, e.g., its faces or vertices.

4 Current Functionality

In this section we present a short overview of the currently available function-
ality of OpenFlipper and give some preview on functionality that will be added
in future releases. The framework runs on Windows, Linux and Mac OS X.
We provide 10 plugins for OBJ (Wavefront), OFF (Object File Format), STL
(stereolithography CAD), PLY (Polygon File Format),BVH (Biovision) and OM
(OpenMesh). Furthermore we plan to integrate DAE (Collada), VITK (Visual-
ization Toolkit) and NETGEN (automatic mesh generator, implemented along
with tetrahedron meshes) support in one of the next releases.

Currently, OpenFlipper has built-in support for several data types. Triangle
and polygonal meshes are supported via the integrated OpenMesh [1] data struc-
ture. B-Spline curves and surfaces are represented by proprietary data structures
(IO supported through OBJ). Furthermore we provide a skeleton datastructure
for skeleton based animations of polygon meshes and some simple primitives
like planes, spheres and light sources. For future releases, we plan to integrate
tetrahedron meshes (CGAL [13]), point clouds, polygonal lines and volumetric
data (e.g., from CT or MRI).

For the current release a set of standard geometry processing algorithms is
already included. The standard algorithms are implementations from recent re-
search papers and constitute a basic repository for other software developers
and users. The OpenFlipper framework only provides the interface to use them.
Some of the algorithms have been developed in well maintained libraries such
as CGAL and OpenMesh and are only imported here to show how simple it is
to integrate new functionality by using existing code. The following list gives a
short overview of the available functionality:

6 Jan Mobius and Leif Kobbelt

Selections: OpenFlipper comes with a large set of selection metaphors for all
supported data types. The build in selections are: single click , surface and vol-
ume lasso, paint ball, boundary, connected component, and a flood filling based
on normal deviation between adjacent primitives. The selection metaphors are
implemented for triangle and polygon meshes and, where applicable, for other
data types. For polygonal meshes we also distinguish between standard selections
and special feature selections (e.g., important edges). For area based algorithms
it is possible to select a handle and a modeling area.

Isotropic Remesher: The isotropic remesher implements the remeshing algo-
rithm by Botsch and Kobbelt [6] and tries to establish an average target edge
length specified by the user on an isotropic triangle mesh.

Decimater: The decimater based on [15, 16] decimates triangular meshes with
respect to different constraints for the resulting meshes. It currently supports
approximate distance constraints(error quadrics) to the original surface, upper
bounds for the normal deviation, aspect ratio of triangles and a target complex-
ity.

Smoother: This plugin implements a Laplacian smoother for triangular meshes
[14]. It can smooth in both tangential and normal direction with C° or C!
continuity while keeping the result within a prescribed distance to the original
surface. OpenFlipper’s feature selection can be used to specify edges or areas
which are kept fixed.

Subdivider: Implementation of Loop [8], sqrt(3) [7], interpolatory sqrt(3) [9]
and modified butterfly[10] subdivision for triangular meshes.

Mesh information: This plugin provides various information about arbitrary
polygonal meshes. It computes statistics about aspect ratios, dihedral angles,
bounding boxes, average edge length, genus, number of elements and many more.

Laplace, mean curvature, Gaussian curvature: The three plugins compute
the laplace vector, mean curvature and Gaussian curvature for every vertex on
a triangular mesh. The computed values are attached to the mesh and can be
used by other plugins.

Texture control: This plugin provides a user interface to change texture files
and to select an arbitrary property on a mesh to be used as texture coordinates.
For example the Gaussian curvature plugin computes the curvature at each
vertex and stores it as a property. Texture control reads these precomputed
values and uses them as texture coordinates for a 1D texture. It also computes
a histogram of the values and provides the user with additional functions like
clamping values or taking the absolute value of them.

Slicing: Clipping planes can be created by this plugin, enabling the user to look
inside of objects. This is especially useful when analyzing tetrahedron meshes
like the ones generated by CGAL [13].

Topology control: This plugin implements elementary topological operations
for meshes like flipping or splitting edges and adding or removing faces.

OpenFlipper: A Geometry Processing and Rendering Framework 7

Scripting: This scripting plugin controls the integrated scripting environment.
It collects functions available to scripting and provides a script editor. Section
5.1 gives a more detailed description of OpenFlipper’s scripting capabilities.

Visual scripting: The visual scripting plugin provides a higher level interface
to the scripting module. This plugin is further described in Section 5.2.

5 Scripting

OpenFlipper provides a variety of modules to ease the development of an inter-
active application. At a later stage of software development extensive testing of
algorithms is required. OpenFlipper provides a scripting environment integrated
into the framework to automate such processes in a batch mode. Qt already
ships with an excellent scripting system that is used as the basis for OpenFlip-
per’s scripting environment. As the language follows the ECMA-262 standard
[12] which is also used for JavaScript, the syntax is familiar to a large number
of developers.

The scripting system of OpenFlipper can be divided into two major parts.
The first one is the general text based scripting system for experienced developers
while the second one is a high level Visual Scripting Interface built on top of
the general scripting.

5.1 General Scripting

OpenFlipper includes a text based scripting editor and interpreter. The editor
collects and shows all available functions exported by the plugins, a description
of their functionality and parameters. Scripts are visualized with syntax high-
lighting and can be directly executed without any compilation. Each function
provided by a plugin can be made available to the scripting system.

Basic types like vectors or matrices are known to the system and can be used
or manipulated directly. Like JavaScript, the language provides loops, condition-
als, input/output and many other standard operators. As scripts are evaluated
at runtime, all existing algorithms in OpenFlipper can be used and controlled via
the scripting system without having to recompile code. This is especially useful
when testing and evaluating algorithms or trying to find optimal parameters for
a set of algorithms.

The scripting system is also capable of modifying and extending the user
interface. Qt includes the Qt Designer tool which can be used to generate user
interfaces and toolboxes. The user interface specification files generated by this
graphical designer tool can be loaded at run time and connected to all existing
algorithms via the scripting language. Consequently no change to a plugin is nec-
essary for creating a new interface, a simple script is sufficient. The quadrilateral
remeshing application described in Section 6.1 uses this option.

8 Jan Mobius and Leif Kobbelt

5.2 Visual Scripting Interface

Scripting is a powerful tool to combine simple algorithmic blocks to more com-
plex algorithms. However, a programming or scripting language is usually too
complex for end users. To support less technically-experienced users in generat-
ing scripts, we implemented the more abstract Visual Scripting Interface [21].
The Visual Scripting Interface is build directly on top of OpenFlipper’s text
based scripting system. The visual script editor is a data flow based block edi-
tor inspired by the block or filter based processing in audio or video processing
applications [20]. The algorithms in OpenFlipper are represented as blocks with
separate inputs and outputs. A simple example is an isotropic remesher. Input
and output for this algorithm are surface triangle meshes. Additionally there
can be other input parameters like, e.g., average edge length for the remeshed
output. Figure 2 shows a simple example for such a visual script. This script
consists of only three blocks. The first block computes the average edge length
of an input mesh. Afterwards the computed length is passed to a math block and
divided by a user specified number. The result is then passed to the isotropic
remesher that uses the input value as the target edge length for its output mesh.
The execution order for the different blocks can get fairly complicated, so the
user has to define an order in which the algorithms are called. This is visualized
by the data flow connections. For blocks that don’t change objects (e.g., math
blocks) the execution order is computed automatically.

Simple Math

Edge'Lengths
(C)@biestld) 1D of an object)

T rrrT— mbe Isotropic Remesh...
Maximal edge | (humbec L3 — .m ID_of an Object
(Mean edge leng. (humber () : (C)lumbery) Target edoe e)

onfigure onfigure

.’ Dataklow) Dataklow LD

-y

Fig. 2. Remeshing algorithm in the Visual Scripting Editor

Many algorithms require user interaction to select an object to work on. The
visual scripting system provides several interactive blocks, allowing to select
objects or asking for user input.

From the implementational point of view every block in the editor is asso-
ciated with an xml file containing in- and output specifications as well as small
code snippets which represent the blocks in the final script. Every visual script is
therefore parsed, the blocks from the xml files and all variables are connected to
a documented OpenFlipper script which optionally can be viewed and modified

OpenFlipper: A Geometry Processing and Rendering Framework 9

by the user in the text based script editor. We have observed that these gener-
ated scripts provide an excellent foundation to learn the OpenFlipper scripting
language. Users can read the code and use it as a starting point for creating
more complex algorithms. The scripts are documented and changes made can
be directly executed to get new results.

As the scripting blocks are defined and composed from simple xml files, the
visual scripting system is not restricted to OpenFlipper’s language. Therefore
the editor and its components can be used to create script code for arbitrary
languages.

6 Industrial Use Cases

A major design goal for OpenFlipper was to provide a toolkit allowing us to
reduce the time and implementational overhead when converting research code
to an end user application. This requires a solid base of working code that can
be legally used in commercial and open source projects (LGPL). Researchers
are provided with a stable toolkit, enabling them to focus on implementation
and testing of new algorithms while visualization, selection or analytic tools are
readily available.

Additionally, the user interface in research and end user applications is usu-
ally quite different. As OpenFlipper allows us to create an additional interface
on top of the existing functionality, only little effort has to be spend to abstract
the interface while keeping the original interface available for expert users.

There are already several commercial projects using OpenFlipper as their
platform. The projects provide continuous improvements and new features to
OpenFlipper’s freely available parts and algorithms. A lot of basic algorithms are
implemented for these projects which will also be published as open source and
are therefore usable and valuable for the community. In the following sections,
we present two of these projects where OpenFlipper significantly reduced the
coding effort during development.

6.1 Quadrilateral Remeshing

Based on the OpenFlipper toolkit, a software for generating high quality quad-
rangular meshes from unstructured triangle meshes [17] has been developed in
the context of a commercial project. The user can control the algorithm’s out-
put by providing additional constraints for the output structures and therefore
modify the resulting quadrangulation.

In the development process of this project the interaction metaphors already
defined in OpenFlipper have been used to define these constraints. One of the
constraint controls is OpenFlipper’s selection system. The user can select im-
portant edges and the algorithm uses the selection as a guidance for the final
edge directions. Additionally, OpenFlipper provides freely drawable polygonal
lines on surfaces which are also used by the system to control the final out-
put. Furthermore the selection system is used to specify where singular vertices

10 Jan Mobius and Leif Kobbelt

should be positioned. All interaction metaphors, visualization, data types and
input/output functions for this algorithm were already provided by the toolkit.

At its frontend the algorithm makes extensive use of multiple interfaces. The
implementation consists of several parts which are implemented in independent
plugins. The first plugin computes the principal curvature directions on the input
mesh. The second plugin computes, based on the principal directions and possi-
ble user hints, a direction guiding field which is used to control the edge flow in
the resulting quadrangular mesh. The third plugin generates a parametrization
and extracts a quadrangular mesh. The interfaces to all plugins are available
to the professional user while a simple unified interface exists showing only the
relevant steps and settings while hiding the remaining parameters (with empiri-
cally derived defaults) from the user. This additional interface is purely defined
as an OpenFlipper script and can be loaded and even modified at run time.

The mixed-integer quadrangulation solver used in [17] is also freely available
as a separate library (CoMISo [18]). An example for the algorithm’s output is
shown in Figure 3.

,‘{{»

LY A

Fig. 3. Model of Iphigenie as an unstructured triangle mesh and the result after the
quadrangular remeshing algorithm.

6.2 Car Modeling

In this project [19], a semi-automatic approach to efficiently and robustly recover
the characteristic feature curves of a given free-form surface has been developed
where the input is not required to be a proper manifold. The technique supports a
sketch-based interface implemented in OpenFlipper where the user must roughly
sketch the feature location by drawing a stroke on the input mesh. For this type

OpenFlipper: A Geometry Processing and Rendering Framework 11

of interaction OpenFlipper’s picking system provides functions that return the
3D position of a mouse click in the scene. The system then snaps the initial sketch
curve to the correct position based on a graph-cut optimization scheme that takes
various surface properties into account. Additional positional constraints can be
placed and modified manually which allows interactive feature curve editing.
The feature curves can be used as handles for surface deformation, since they
describe the main characteristics of an object. The system allows the user to
manipulate a curve while the underlying surface adopts itself to the deformed
feature.

During development of this project a lot of the existing functionality of Open-
Flipper has been used and therefore significantly reduced the coding effort for
this project. No rendering code was required as it was already available for the
B-Spline and mesh data types used in this project. For these types the 10 and
file management already existed in the framework. Figure 4 shows an example
for modeling a car using the final application.

Fig. 4. Car modelling implemented on top of OpenFlipper. Left: Original models,
Right: Modified models.

12 Jan Mobius and Leif Kobbelt

7 Conclusion and Future Improvements

In this paper we presented our OpenFlipper software framework. We developed
a system which is should be helpful for the majority of the geometry processing
community.

By now OpenFlipper is used for many different purposes. Students use it for
learning the basics of computer graphics and especially geometry processing and
rendering. Researchers use it to develop and test algorithms while companies
benefit by directly using research code in an end user application with only little
effort. All of these users provide updates and extensions to the freely available
part of the framework. Therefore the functionality of OpenFlipper rapidly in-
creases and it has a growing toolbox of basic algorithms, interaction metaphors
and rendering functions which has been given back to the community by the
various contributors as free software.

The user community is currently developing a lot of new functions for Open-
Flipper. These include support for more file formats (Netgen, VTK, Collada),
new data types like point splats or tetrahedron meshes and many algorithms
working on them. Figure 5 shows a preview of the tetrahedron meshes.

All this functionality simplifies development and enables the people to focus
on their creative work when inventing new algorithms, making OpenFlipper a
valuable framework for the community.
The source code and executables are available at our website [22].

Fig. 5. Preview of a tetrahedron mesh in OpenFlipper.

Acknowledgements. We would like to thank all contributors, users, and de-
velopers who support the development of OpenFlipper.

OpenFlipper: A Geometry Processing and Rendering Framework 13

References

1. Botsch, M., Steinberg, S., Bischoff, S., Kobbelt, L. and RWTH Aachen: OpenMesh
- A generic and efficient polygon mesh data structure. In: OpenSG Symposium 2002
2. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.:
Meshlab: an open-source mesh processing tool. In Sixth Eurographics Italian Chap-
ter Conference 2008, 129-136.
. Graphite, http://alice.loria.fr/index.php/software.html
GNU General Public License, http://www.gnu.org/licenses/gpl.html
GNU Lesser General Public License, http://www.gnu.org/licenses/1gpl.html
. Botsch, M., Kobbelt, L.: A remeshing approach to multiresolution modeling. In:
SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing, 185-192
. Kobbelt, L.: Sqrt(3)-Subdivision. In: Proc. ACM SIGGRAPH ’00, 103-112
8. Loop, C. T.: Smooth Subdivision Surfaces Based on Triangles. In M.S. Thesis,
Department of Mathematics, University of Utah, 1987
9. Labsik, U., Greiner, G.: Interpolatory sqrt(3)-Subdivision. In: Comput. Graph. Fo-
rum, 2000
10. Zorin, D., Schréder, P., Sweldens, W.: Interpolating Subdivision for Meshes with
Arbitrary Topology. In: Proceedings of Siggraph 1996, 189-192
11. Qt cross-platform application and UI framework , http://qt.nokia.com
12. Standard ECMA-262, ECMA Script Language Specification, 5th edition (Decem-
ber 2009)
13. CGAL: Computational Geometry Algorithms Library, http://www.cgal.org
14. Botsch, M., Pauly, M. ,Kobbelt, L., Alliez, P., Lévy, B., Bischoff, S., Rossl, C.: Geo-
metric modeling based on polygonal meshes. In: SIGGRAPH ’07: ACM SIGGRAPH
2007 courses
15. Kobbelt, L., Campagna, S. , Seidel, H.: A General Framework for Mesh Decimation.
In: Proceedings of Graphics Interface 1998, 43-50
16. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In:
SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer graphics
and interactive techniques 1997, 209-216
17. Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-integer quadrangulation. In: ACM
SIGGRAPH 2009 papers, 77:1-77:10
18. CoMISo: Constrained Mixed-Integer Solver library, http://www.graphics.
rwth-aachen.de/comiso
19. Dekkers, E., Kobbelt, L., Pawlicki, R., Smith, R.: A sketching interface for feature
curve recovery of free-form surfaces. In: Computer-Aided Design 2011 ,In Press
20. Pavic, D., Schonefeld, V., Krecklau, L., Habbecke, M., Kobbelt, L.: 2D Video
Editing for 3D Effects. In: VMV 2008, 389-398
21. Kasprzyk, D.: Diploma Thesis on Optimized User Interface for Geometry-
Algorithms. RWTH Aachen University 2009
22. OpenFlipper website, http://www.openflipper.org

N

