
Optimization Methods for Scattered Data
Approximation with Subdivision Surfaces

Martin Marinov and Leif Kobbelt

Computer Graphics Group, RWTH Aachen, Germany 1

Abstract

We present a method for scattered data approximation with subdivision surfaces which ac-
tually uses the true representation of the limit surface as a linear combination of smooth
basis functions associated with the control vertices. A robust and fast algorithm for exact
closest point search on Loop surfaces which combines Newton iteration and non-linear
minimization is used for parameterizing the samples. Based on this we perform uncondi-
tionally convergent parameter correction to optimize the approximation with respect to the
L2 metric and thus we make a well-established scattered data fitting technique which has
been available before only for B-spline surfaces, applicable to subdivision surfaces. We
also adapt the recently discovered local second order squared distance function approxi-
mant to the parameter correction setup. Further we exploit the fact that the control mesh of
a subdivision surface can have arbitrary connectivity to reduce the L∞ error up to a certain
user-defined tolerance by adaptively restructuring the control mesh. Combining the pre-
sented algorithms we describe a complete procedure which is able to produce high-quality
approximations of complex, detailed models.

Key words: Subdivision surfaces, Approximation, Fitting, Reverse engineering, Shape
reconstruction

1 Introduction

Scattered data approximation methods are a key technology for shape reconstruc-
tion and reverse engineering from measured geometry data. In a typical application
scenario, raw data is generated, e.g., by some 3D scanning device and fitting a glob-
ally smooth surface to the set of sample points converts this data into a geometric

1 Email: {marinov | kobbelt}@cs.rwth-aachen.de
Phone: +49 241 8021815, Fax: +49 241 8022899

Preprint submitted to Elsevier Science 19th July 2005

Figure 1. Original Iphigenie model (left): scanned data 351750 points, Loop surface ap-
proximation (center): maximum deviation is 0.05% of the bounding box diagonal, control
mesh defining the surface (right): 15347 control points.

representation of the original object that enables sophisticated downstream applica-
tions like, e.g., free-form shape editing. Most of the work in this area has been done
based on classical tensor-product spline surfaces but with the availability of more
flexible subdivision surfaces many ideas have been extended to this generalized
setting during the last years. Instead of being constrained to rectangular patches,
subdivision surfaces can represent globally smooth surfaces of arbitrary (manifold)
topology by allowing for arbitrary irregular control meshes. We are using Loop
subdivision surfaces [1] in this paper, but the basic concepts could be transferred to
other types of subdivision, e.g., Catmull-Clark subdivision surfaces [2].

The majority of the well-established scattered data approximation techniques fo-
cuses on the minimization of some form of the L2 error. The main reason for this
is that least squares problems are easy and efficiently handled by solving a sim-
ple linear system. However, from the application point of view, L∞ type errors are
much more relevant since the user usually prescribes some maximum tolerance δ
by which the fitted surface is allowed to deviate from the given data. Because the
L2 metric is computed by some integral over the surface, one often wastes effort
(and degrees of freedom) when globally improving the approximation even if the

2

maximum tolerance is only violated in some local region.

The motivation for the work presented in this paper is the observation that due to
the flexibility of subdivision surfaces with respect to their control mesh structure,
we can apply and iterate many different operations to progressively improve the ap-
proximation of the given data. If we just update the positions of the control vertices
we can do least squares fitting just like for spline surfaces. However, in addition
we can change the structure of the control mesh by locally inserting or removing
control vertices. This allows us to efficiently reduce the L∞ error by adaptively
introducing new degrees of freedom (i.e. control vertices) in regions where the
maximum tolerance is exceeded and by removing degrees of freedom in regions
where the surface fitting problem is under-determined due to sparse sample data.

The specific contributions of this paper are that we present a complete scattered
data fitting method for subdivision surfaces that uses the true subdivision basis
functions instead of some piecewise linear approximation. This is made possible
by using Stam’s exact evaluation procedure [3,4] to set up the least squares system.
Since we can also evaluate partial derivatives of a subdivision surface exactly, we
propose a robust algorithm which finds the parameter value of the closest point on
the approximating surface to a given sample. Thus we generalize the technique of
parameter correction [5] from spline surfaces to subdivision surfaces and perform
unconditionally convergent optimization of the approximation with respect to the
L2 error (Section 2).

To reduce the L∞ error below a user prescribed error tolerance δ, we present an
iterative procedure in Section 3 that adaptively refines the control mesh according
to the local approximation error or coarsens it if the local sample density is insuffi-
cient. In combination with mesh connectivity regularization we are able to produce
high quality approximations without having to add a fairness functional. Our tech-
nique is progressive and scalable in the sense that we can get a coarse fit after just a
few seconds while we can further improve the approximation quality by letting the
algorithm perform some more iterations.

1.1 Related work

The amount of work that has been done in the area of surface approximation is
immense and a complete review is beyond the scope of this paper. We refer to [6]
as a standard reference and to [7] for some more recent advances. Traditionally,
tensor-product spline surfaces have been used for this task, but when it comes to
the approximation of complex geometric objects, their rigid regular structure makes
it necessary to fit several patches to parts of the data and then to stitch them together
in a geometrically smooth fashion [8].

Another problem is that the regular structure of tensor-product patches prohibits the

3

Figure 2. Uniform parametrization (left) vs. parameter correction (right). The dots represent
the approximated samples and the position of the squares indicate the corresponding pa-
rameter values. In the uniform setting we have to find the closest data sample for uniformly
distributed “sensor” points on the approximating surface. In the parameter correction set-
ting we find the closest point on the approximating surface for each sample leading to a
more reliable geometric distance measure.

flexible adaption of the control mesh to the local shape complexity or sample den-
sity. As a consequence penalty functionals (a.k.a. fairing functionals) usually have
to be added to the approximation problem in order to stabilize it [5,8]. All these
difficulties compromise the flexibility and approximation power of spline surfaces
for general approximation problems.

Subdivision surfaces are globally smooth (mostly even piecewise polynomial) sur-
faces that do not suffer from these limitations. Complex shapes can be represented
with one control mesh and local adaption of the control vertex density is straightfor-
ward [9]. This is why several papers [10,11,12,13,14,15] have addressed the scat-
tered data fitting problem by using subdivision surface representations. However,
since subdivision surfaces have no obvious explicit parametrization, modifications
and simplifications of the general setting have been used for the sake of efficiency.

One issue is that, assuming the canonical parametrization, subdivision surfaces are
much easier to evaluate at dyadic barycentric parameter values than at arbitrary pa-
rameter values. This is why special uniform parameterizations of the given sample
data have been preferred by many authors [12,16,15,17,18,19]. Although this leads
to well conditioned least squares systems and extremely simple quasi-interpolation
operators [15,17], the major drawback of using uniform parameterizations is that
the evaluated approximation errors differ significantly from the actual geometric
deviation. In [17], Litke et al. use uniform parameterization in combination with
re-sampling the target surface. While this leads to a geometrically meaningful error
metric, it may affect the local sample density potentially leading to under-sampling
in regions where the surface normals of the fitting surface and the target surface
strongly differ or where the fitting surface has high curvature (Fig. 2).

Parameter correction is a technique that does exactly the opposite. For each given
sample point, the closest point on the approximating surface is found which implies
an obvious geometric interpretation of the approximation error (Fig. 2). However,

4

whenever parameter correction has been used for subdivision surfaces in the litera-
ture, the correction has been computed with respect to a piecewise linear approxi-
mation instead of the true limit surface [11]. In practice this often leads to numerical
instabilities - mostly due to the fact that the piecewise linear approximation does
not have a continuous surface normal field.

From the conceptual point of view our work is closest to [11]. In this paper Hoppe
et al. describe a procedure that does least squares fitting of a subdivision surface
to scattered data, however the parametrization is computed and evaluated only on
a piecewise linear approximation of the approximating surface. This procedure is
interleaved with a “random descent” mesh optimization scheme, which iteratively
attempts to reduce the L2 error. Minimization of the L∞ error is not discussed.

A quite different approach to subdivision surface fitting is described in [20,18,16]
and [15,17]. Here the so-called multiresolution subdivision surfaces [21] are used
which assign an additional displacement vector to every control vertex of an adap-
tively refined control mesh. While this representation provides a natural hierarchy
that distinguishes different levels of detail, the mathematical representations be-
comes extremely redundant as can be seen from the number of detail coefficients
that are necessary to closely approximate complicated objects [15].

In a recent work, Cheng et al. [22] present a fitting technique for plain subdivision
surfaces, based on the second order approximant of the surface squared distance
function presented in [23]. We discuss the use of this new distance metric within
our approximation framework in Section 2.3. A comparison between the results of
[22] and our method is presented in Section 5.

1.2 Notation

With S = {s1 · · · sM} we denote the set of given data samples and with D the
subdivision surface which is fitted to S. Its control mesh, the base mesh C0(P0, T0),
is composed of two sets - vertices and triangles. We denote N = #(P0) as the
number of degrees of freedom (control vertices) and we usually assume M À N .
The uniform refinement levels of C0 are {C1 · · · Ck} and the meshes Ĉj(P̂j, Tj) are
obtained by applying the limit surface projection operator to the control vertices Pj

of Cj .

2 Optimization of the L2 metric

We examine the problem of finding the best L2 approximation of a given set of
samples S = {si} by a Loop subdivision surface D with fixed number of control

5

Figure 3. From left to right: a) original model with 30696 sample points, b) initial approxi-
mation with 461 control points, L2 error 82.9, c) after 25 parameter correction and re-fitting
steps, L2 error 42.6, d) and e) show color coded errors before and after the 25 optimization
steps. Notice the concentration of the error to local “hot spots” which makes it easier to
detect regions where the insertion of new control vertices effectively reduces the L∞ error.

points and connectivity. Since S is a discrete set, the L2 error is expressed by the
following term:

L2({si}, D) =

(
M∑

i=1

‖si − D(ti)‖
2
2

) 1

2

, (1)

where {ti} are the parameter values assigned to the samples {si} with respect to
some parametrization of the surface D. The most common way is to use barycen-
tric coordinates with respect to the triangles of the base mesh C0, i.e., ti =<
fi, (vi, wi) >, where fi ∈ T0 indicates the patch to which the sample si is mapped
and (1−vi −wi, vi, wi) define the barycentric coordinates of ti within this triangle.

Given a fixed correspondence si ↔ ti, the problem of minimizing (1) is solved
in the least squares sense by finding that solution P0 which minimizes the L2

residuum of the over-determined linear system

AP0 = S . (2)

In order to compute the matrix A = [φj(ti)]M×N for arbitrary parameterizations
{ti}, we have to evaluate the basis functions {φ1 · · · φN} which define D at {t1 · · ·
tM} (see 2.1). Solving the system (2) gives us the optimal position of the control
vertices P0 of D. The sparsity of the matrix A depends on the support of the basis
functions φj . In the case of Loop subdivision surfaces, each patch (corresponding to
one triangle of the base mesh) is affected by 12 control vertices on average. Hence
the matrix A has about 12 non-zero coefficients per row. There are many different
ways to efficiently solve (2). In our implementation we use an iterative method such

6

as CGLS [24].

Another way to minimize (1) is by performing parameter correction, i.e., by finding
for every sample point si the parameter ti of the closest point on D. Iterating least
square fitting and parameter correction generates a sequence of solutions D0, D1,
D2, ..., each of which has a smaller L2 error, until the approximation quality cannot
be improved any more, i.e.

L2({si}, D
k) − L2({si}, D

k+1) < ε ,

or some other criterion is met, for example a maximum number of steps is per-
formed.

2.1 Exact evaluation of the subdivision basis functions

A significant improvement of our method is due to the fact that the fitting proce-
dure depends on the exact subdivision surface D instead of depending on some
piecewise-linear approximation of it, as in [11]. To achieve this, we use the rep-
resentation of D as a linear combination of one smooth basis function for each
control vertex, i.e.

D(t) =
N∑

j=0

φj(t)p0,j , (3)

where the parameter domain of D is modeled as the faces of the base mesh C0.
Unlike uniform tensor-product spline surfaces, the subdivision basis functions are
not mere translates of each other. Instead, each φj depends on the valence of the
corresponding control vertex p0,j and on the valences of its direct neighbors in C0.
Hence, the easiest way to evaluate a basis function φj is to assign an additional
scalar attribute σ to each control vertex and set σ = 1 for p0,j and σ = 0 for all
other vertices in P0 [25], and then to apply Stam’s evaluation procedure on the
so-defined scalar-valued mesh.

2.2 Exact closest point search and parameter correction

The next ingredient of our L2 error minimization procedure is an algorithm for find-
ing the exact closest point D(ti) on a Loop subdivision surface D given an arbitrary
sample point si. This is done by performing stabilized Newton iteration. The start-
ing value for the iteration can be either a previously assigned parameter value ti or
a value obtained by searching for the closest point on a discrete piecewise linear
approximation Ĉk. In the second case we use a variant of the MESH-framework

7

for evaluating Hausdorff distances between surfaces [26], which employs a spa-
tial data structure in order to minimize “closest point on triangle” evaluations. We
denote the initial solution as ti,0.

In the j-th step of the Newton iteration we linearize the surface D at the current
approximate solution ti,j by computing the tangent plane Ti,j , which is given by
the Jacobian ∇D(ti,j) ∈ R

3×2. In order to find an update vector qi,j ∈ R
2 in the

parameter domain towards an improved estimate for the closest point D(ti), we
determine the orthogonal projection of si onto Ti,j by solving the following 2 × 2
linear system for qi,j:

{si − (D(ti,j) + ∇D(ti,j) · qi,j)} .
∂D

∂v
(ti,j) = 0

{si − (D(ti,j) + ∇D(ti,j) · qi,j)} .
∂D

∂w
(ti,j) = 0

Special care has to be taken when actually updating the parameter value ti,j =<
fi,j , (vi,j , wi,j) > since the parameter domain of the surface D is split into dis-
joint triangles corresponding to the faces of the base mesh C0. In order to avoid an
excessive number of special cases, we simply consider the following three cases:

(1) When (vi,j , wi,j) + qi,j still lies in the same triangle fi,j then ti,j+1 :=<
fi,j , (vi,j, wi,j) + qi,j >.

(2) When (vi,j , wi,j) + qi,j lies outside fi,j , i.e., the update moves into a neigh-
boring patch, then we scale qi,j down by a factor 0 < λ < 1 such that the
updated parameter value ti,j+1 :=< fi,j , (vi,j , wi,j) + λqi,j > lies exactly on
the boundary of the patch fi,j . By this we avoid the re-parametrization that
would be necessary to compute the proper barycentric coordinates of the vec-
tor qi,j in the next parameter triangle.

(3) If ti,j lies already on an edge of fi,j and qi,j is pointing outside then we
switch to the neighbor face fi,j+1 into which qi,j points, i.e., ti,j+1 :=< fi,j+1,
(vi,j+1, wi,j+1) > where (vi,j+1, wi,j+1) are the barycentric coordinates of the
same common boundary point with respect to the new triangle fi,j+1. The
actual parameter update will be executed in the next iteration.

The distinction between case (2) and (3) is necessary because it is difficult to predict
if the update vector qi,j+1 in the next Newton iteration will point into the same
direction as qi,j or in the opposite direction.

If the starting value ti,0 is not sufficiently close to the exact solution, it might hap-
pen that the Newton iteration suggests a parameter value where the L2 distance
actually increases, i.e. ‖si − D(ti,j+1)‖2 ≥ ‖si − D(ti,j)‖2. This usually means
that the length of the update step qi,j is incorrect, which is a common behav-
ior of any root-finding algorithm for multivariate functions. To handle such sit-
uations in a robust manner, we switch to a reliable univariate optimization tech-

8

nique like Brent minimization [27] to find the minimum ĥ of the function g(h) =
‖si − D((vi,j, wi,j) + hqi,j)‖2, h ∈ (0, 1). Finally we set ti,j+1 =< fi,j , (vi,j , wi,j)+

ĥqi,j >.

We stop the closest point search whenever ‖qi,j‖2 < ε or j > n. In our test cases
we always used ε = 10−6 and n = 500. Because of the robust minimization-
based backtracking, we observed even for very complicated models with more than
200000 sample points less than 0.01% failures to converge with respect to the tol-
erance ε in less than n update steps. If such a failure occurs, we compare the newly
found solution at ti,n with the old solution at ti,0 and keep the better one. This
guarantees the unconditionally stable and monotonic convergence of the parameter
correction procedure. A case where ti,0 is actually better than ti,n occurs extremely
rarely. In most of our experiments the Newton iteration converges on average in
less than 6 update steps.

It is important to notice the difference of our parameter correction scheme to pre-
vious approaches [11], where a piecewise linear approximation of the limit surface
was used for the closest point search. An update step that reduces the distance
between a sample point si and a piecewise linear approximation Ĉk of the limit
surface D does not necessarily reduce the distance between si and D. To illustrate
this we repeated the experiment of Fig. 3 searching for the closest point on Ĉ2, as
proposed in [11]. The L2 error after the 25 optimization steps was larger by 26.24%.
Since the test control mesh was relatively coarse, we could repeat the experiment
again, this time using Ĉ4 as a piecewise linear approximation of D. The exact so-
lution was still better by 11.4%. Note that this approach is not applicable for the
optimization of large control meshes (without the use of a sophisticated adaptive
subdivision algorithm), since it requires us to subdivide the control mesh at every
step to a 64 times larger mesh.

2.3 Second order distance function approximants

The distance metric (1) is used in most approximation setups aiming at globally
minimizing the distance between an approximating surface and sampled geometry
data. However methods optimizing with respect to (1) are known to converge lin-
early and one would like to use a quadratic method since then the iterative approxi-
mation procedure would require less iterations to obtain a local minimum in the 3N
dimensional space of the control vertices of the approximating mesh. As observed
in [23], the squared distance between a sample point si and point p = si + λni (ni

is the sampled surface normal at si) is a second order approximant of the distance
function of S at si only if these two points are relatively far away from another. On
the other side, as proved in [28], the approximant (5) given below is a second order
approximant of the squared distance function. Correspondingly an approximation
procedure which interleaves fitting and correspondence correction using (5) is a

9

Newton method and has quadratic convergence [22].

The second order approximant ([23]) is defined as follows: Let κ1 and κ2 be the
principal curvatures of S at si and ρ1 = 1/κ1, ρ2 = 1/κ2, and e0 and e1 are the
corresponding principal curvature directions (for umbilic points any two orthogonal
vectors lying in the tangent plane at si could be used). The vectors e0, e1 and n =
e0 × e1 define a local coordinate frame at si in which the point p has coordinates
(0, 0, d). If |d| < min(|ρ1| , |ρ2|), then the second order approximant of squared
distance function of S at p is given by:

Fd(x1, x2, x3) =
d

d − ρ1

x2
1 +

d

d − ρ2

x2
2 + x2

3. (4)

In practice an always positive variant of (4) is used:

F+
d (x1, x2, x3) =

d

d + |ρ1|
x2

1 +
d

d + |ρ2|
x2

2 + x2
3. (5)

The fitting methods described in [23,22] use the sample correction (Fig. 2) tech-
nique to establish the correspondence between the approximating surface D and
sampled surface S. This allows them to choose the sample point si always so that
error vector D(ti) − si is parallel to ni and hence apply (5) directly. However, our
parameter correction technique chooses the point D(ti) so that D(ti)−si is parallel
to the normal vector N(ti) at D(ti). In general ni 6= N(ti) and to apply (5) to our
parameter-correction based method, we have to consider the local squared distance
approximant of the surface D at the parameter point D(ti) to si. Hence we have
to compute the principal curvatures and directions of the fitting surface at every
parameter value ti. Since D changes in every optimization step, these terms have
to be recomputed, which is prohibitively expensive. Moreover Loop subdivision
surfaces do not have a well defined curvature tensor at extraordinary vertices and
in vicinity of such vertices the curvature behaves badly.

Instead we observe that when d → 0, then F +
d (x1, x2, x3) = x2

3 which is the
squared distance to tangent plane of D at ti. Correspondingly when d → ∞,
F+

d (x1, x2, x3) = x2
1 + x2

2 + x2
3 which is the squared distance to the point D(ti).

Therefore we define a distance metric at the sample si using a blend between these
two limit cases:

Ei = µi ‖D(ti) − si‖
2 + (1 − µi) ‖Ti(si)‖

2 , µi =
‖D(ti) − si‖

2 · maxj ‖D(tj) − sj‖
(6)

where Ti(si) is the distance to tangent plane of D at tt, i.e, T (si) =< N(ti), si >
− < D(ti), N(ti) >. Minimizing Ei is a non-linear problem, but we replace N(ti)

10

Figure 4. L2 error optimization - convergence rate (log2(L
2) vs. number of iterations) plot.

The graphs A and B represent the convergence rate of the optimization procedure approxi-
mating a sphere (2354 samples) with a subdivision surface with 24 control points using (1)
and (7) respectively. The graphs C and D represent the convergence rate of the optimiza-
tion procedure approximating the Rocker Arm model (40177 samples) with a subdivision
surface with 402 control points using (1) and (7) respectively.

and µi with their values for the current optimization step and solve only for the de-
grees freedom in the linear expansion of D(ti), see (3). In consequence, the energy:

E({si}, D) =
M∑

i=0

Ei (7)

is a quadratic functional and could be minimized by solving a linear system.

Note that (6) differs from (5) because it ignores the principal curvatures and direc-
tions of D since it is difficult to estimate them and only preserves the behavior of
(5) in the limit cases. The blending factor µi is defined so that the samples relatively
far from D are attracted more towards their foot-point D(ti), while points which
are already very close to D are allowed to move tangentially.

To integrate (6) into our method, we simply replace the minimization of (1) with
minimization of (7) when iterating the parameter correction and fitting steps in
our L2 error optimization procedure. We did not explore the theoretical properties
of (7), but our practical experiments show that the so modified L2 optimization
procedure has faster convergence rate for isotropic objects and better convergence
behavior for general objects (See Fig. 4). On the other hand this convergence ad-
vantage might be sometimes compromised by the fact that composing and solving
the linear system required for minimizing (7) is computationally more involved.
Also, due to the fact that unconstrained tangential movement of the control vertices
is allowed, nothing prevents the approximating surface from folding over, and one
has to use some kind of a fairing functional to prevent such artifacts.

11

3 Optimization of the L∞ metric

While the L2 error is a good measure for globally fitting a surface to sample data,
the L∞ error is much closer to the intuitive notion of approximation tolerance.
Hence we present a technique to effectively reduce the L∞ error by changing the
structure of the control mesh. The L∞ error for discrete sample data {si} is defined
as:

L∞({si}, D) = max
1≤i≤M

‖si − D(ti)‖2 . (8)

In engineering applications this maximum tolerance δ ≥ 0 is usually set by the user.
In [16,20,15,17] multiresolution subdivision surfaces are used to satisfy such user
defined tolerances. Faces for which the maximum error is exceeded are subdivided
adaptively and displacement vectors are added to the newly inserted vertices. This
approach is robust and leads to quite good results, has the advantage of a genuine
multiresolution semantics and is convenient for applications such as progressive
transmission and compression. However, it also has some drawbacks:

(1) Looking at the results, e.g., in [15], it seems that the representation is highly
redundant in terms of the number of coefficients that we need to faithfully rep-
resent complex objects. The representation is no longer unique, especially if
multiple detail coefficients are assigned to the same control vertex on different
refinement levels.

(2) The conceptual simplicity of the subdivision surface is lost since we have to
deal with a combination of basis functions from different refinement levels.
The evaluation can become tricky in regions where the adaptive refinement
level changes.

To compensate for these difficulties, we present an iterative method for optimizing
the control mesh of a plain subdivision surface D such that the approximation sat-
isfies a given L∞ error tolerance δ ≥ 0. We derive different heuristics to improve
both the approximation and the surface quality. The method is based on a set of
fundamental operations:

(1) Adaptive insertion of control vertices where the tolerance is not met (Section
3.1).

(2) Removal of control vertices in under-sampled regions (Section 3.2).
(3) Re-establishing the parameterization {ti} of the samples {si} after the control

mesh (and hence the surface D) has changed. This is done by re-running the
parameter correction algorithm of Section 2.2.

(4) Connectivity regularization (Section 3.3).

12

The overall optimization procedure is described by the following pseudo-code:

Adaptively insert control vertices
do

Regularize connectivity
Re-establish the correspondence
Remove control vertices in
under-sampled regions

while removed_vertices_number > 0
Fit the new control mesh to the samples

The presented technique does not guarantee the achievement of the criterion
L∞({si}, D) < δ in one single iteration, it is only a heuristic which identifies
regions of C0 which should be optimized with respect to the L∞ error and the cur-
rent parametrization {ti}. In practice, one usually needs several iterations of the
above procedure to satisfy the criterion. In Section 4 we interleave this iteration
with the technique described in Section 2 to bound the growth of the number of
control vertices.

3.1 Adaptive insertion of control vertices

With Sfi = {si|ti ∈ fi} we denote the set of samples mapped to fi ∈ T0. For every
fi ∈ T0 we define

L∞(fi) = max
sk∈Sfi

‖sk − D(tk)‖2 .

If L∞(fi) > δ, we have to split the face fi and so locally add new degrees of
freedom. We denote the set of all to-be-split faces by G = {fi|L

∞(fi) > δ}.

There are several common ways to split a face, e.g., longest edge-split, 1-to-3 split,
or 1-to-4 split with crack-fixing. We empirically found that the best way to adap-
tively refine the mesh in terms of surface quality and approximation is to 1-to-4
split every face from G and then to fix the resulting cracks by bisecting neighboring
faces. This way of adaptive refinement least affects the regularity of the mesh since
all newly inserted vertices have valence 5 or 6 and only the crack-fixing changes the
valence of some existing vertices by one. Other adaptive refinement operators tend
to produce much more irregular, i.e., non-valence-6, vertices which has a negative
effect on the quality of the resulting limit surface.

Let Q be the set of control vertices affected by the adaptive refinement of G (in-
cluding the crack-fixing). These vertices have a natural one-to-one correspondence
to certain control vertices from the mesh C1 obtained by applying the uniform Loop
subdivision operator to the given mesh C0. In the adaptively refined mesh, we as-
sign to all control vertices from Q the vertex positions of the corresponding vertex

13

Figure 5. Adaptive insertion of control vertices. Squares correspond to the newly inserted
control vertices when splitting the central face. Dots correspond to the original control
vertices shifted to their position in C1. Dashed lines denote crack-fixing edges.

in C1 while the other control vertices keep their position from C0 (Fig. 5). By this
we minimize the instant modification of the surface D since the locally refined res-
olution of the control mesh is compensated by shifting the control vertices to their
corresponding position on the next refinement level. The resulting change of the
limit surfaces is significantly smaller compared to the adaptive refinement operator
that simply inserts the new vertices at the midpoints of the edges. Notice, however,
that we still treat the resulting control mesh as a single resolution plain subdivision
surface.

3.2 Removal of control vertices in under-sampled regions

During the iteration of parameter correction, least squares fitting, and the adaptive
insertion of new control vertices it can happen that some control vertices in C0

become under-determined if too few samples (or more precisely, their associated
parameter values) lie close enough to the center of the corresponding basis func-
tion’s support. This leads to very unpleasant artifacts like ripples and bumps. The
standard answer to these kind of instabilities, especially in the spline world, is to
add a penalizing term (a fairing functional) to the minimization problem which,
however, might affect the approximation quality in the properly sampled regions.
Again by exploiting the flexibility of subdivision surfaces with respect to the con-
nectivity of their control meshes, we propose an alternative approach that is based
on detecting under-sampled vertices and removing them from the mesh.

From the mathematical point of view, under-determined control vertices degrade
the condition number of the matrix A in the least squares equation (2) which makes
the solution less robust. An appropriate value to rate the degree of being under-
determined for a given vertex is the sum of the absolute values of the coefficients
in the corresponding column of the matrix A. In the case of Loop subdivision, the
basis functions and hence the matrix coefficients are all positive anyway.

The major drawback of this stability measure is that we need to evaluate it during
the L∞ optimization phase when no valid matrix A is available and hence we have

14

Figure 6. Left: the Voronoi cell Vi of a control vertex pi is defined as the union of all
Voronoi sectors of pi. Right: the one-ring region Wi is defined as the union of the control
faces adjacent to pi. The dots represent the parametrization of the samples in the domains
defined by the control faces. Samples are associated to the set SVi (resp. SWi) if their
parameter value is inside Vi (resp. Wi). Depending on the L∞ error, a vertex pi is classified
as under-sampled if SVi or SWi is empty.

to compute each of these coefficients by Stam’s evaluation procedure. For efficiency
reasons we therefore check if a control vertex is under-determined with a simplified
criterion. The idea is to simply check if there are samples present at all in some
region around the center of a basis function’s support.

Since we observed that the stability of the least squares system is less critical if the
approximating surface already fits very well to the given sample data, we actually
define two criteria. One to be used when the L∞ error is above some threshold τ
and one to be used when it is below.

For every control vertex pi we define the Voronoi region Vi as the union of all
Voronoi sectors corresponding to the adjacent (parameter) triangles [29] and the
one-ring region Wi as the union of all adjacent (parameter) triangles. Both regions
cover some inner part of the basis function φi’s support. Further we denote the set
of samples that are associated with some parameter value in Vi or Wi by SVi or
SWi respectively. Based on these definitions, we decide that a vertex pi is under-
determined iff the current L∞ error is above the threshold τ and the set SVi is empty
or the current L∞ error is below the threshold τ and the set SWi is empty (Fig. 6).

The threshold τ could be set by the user. However, in our experiments we found
that the choice of τ is not very critical so we simply set it to 0.1% of the bounding
box diagonal of S for all the models that we tested.

Once a vertex is classified as under-determined we remove it by collapsing that
half-edge connected to it which minimizes the connectivity metric (9) of the control
mesh after the collapse.

15

3.3 Connectivity regularization

We use the following common metric [30] for rating the regularity of the connec-
tivity of a mesh M :

R(M) =
∑

v∈M

(d(v) − dopt(v))2, (9)

where d(v) is the valence of the vertex v and dopt(v) = 4 if v is a boundary vertex
or dopt(v) = 6 if v is a non-boundary vertex. An edge flip is called good if it
decreases R(M). We build a candidate set H of all good edge flips and perform a
greedy optimization by choosing the best flip hi ∈ H , i.e., the one that maximizes
the improvement R(C0) − R(C

′

0), in every step. After flipping we remove hi and
all edge flips affected by it from H and continue the greedy selection. Once H is
empty we build a new set of candidates and check if there exist more good flips.
The procedure stops once there are no more good edge flips in C0. Although this
approach is not as sophisticated as the one in [30] it usually converges quickly to a
local minimum of R(C0) and successfully prevents the occurrence of high or low
valence vertices in the control mesh.

4 Overall approximation procedure

Finding a good balance between the optimization of the L2 error (Section 2) and
the optimization of the L∞ error (Section 3) is one of the key issues for achieving
a high-quality approximation and in our implementation this balance is determined
by the user who has to select two parameters - K and J . Here, K is the maximum
number of optimization steps, and every J-th step we perform optimization with
respect to the L∞ error, i.e., change the structure of C0. The user also prescribes
the L∞ error tolerance δ. The following pseudo-code implements the main approx-
imation loop:

while k < K and L∞
k > δ

if ((k+1 mod J) == 0)
Optimize the L∞ error

else
Optimize the L2 error

end
k=k+1

end

As a rule of thumb, using relative large J = 5, 6, .., 10 is a good idea and often
leads to control meshes with smaller complexity (Fig. 7) since it is generally worth
investing effort in finding the best approximating surface with the current number of

16

Figure 7. a) Original Cyberware scan of a male head with 320k triangles, M = 160k .
From left to right: approximations produced by our method with relative tolerance 0.03%
(as in [15]) for different values of the parameter J , Ĉ0 is shown: b) N = 16792, J = 1,
8min, c) N = 14365, J = 3, 15min, d) N = 13642, J = 5, 22min, e) shows (d) shaded.
The initial approximating surface has 1600 vertices.

degrees of freedom, before trying to optimize the fit by adaptively inserting control
vertices in the high error regions. One can also look at J as a parameter controlling
the trade-off between mesh complexity and running time for a given tolerance.

4.1 Initial fitting surface

As in [13,19], given a polygonal mesh S we find the initial approximating sub-
division surface D by decimating S using QEM-based mesh simplification [31]
until the number of degrees of freedom, i.e., the number of control vertices of C0,
reaches some predefined number. A necessary condition for C0 is to have the same
topology as S. The final quality of the approximation might vary depending on the
number of C0 control vertices, but values from 1% to 5% of M provide always very
good results for dense S. One might expect that using relatively large initial N over
5% of M will produce better results, but this often leads only to unjustified waste
of degrees of freedom which do not contribute to the quality of the approximation
and the overall minimization of the error.

The connectivity information of S is not used at any other place throughout the
approximation procedure, therefore one could use any other method for determin-
ing the initial surface. In the future we intend to examine alternative approaches to
construct the initial approximating surface with the same topology as the sample
set, which will allow us to perform approximation also of non-triangulated point
sets.

17

Figure 8. From left to right: a) the original Stanford bunny model. Different approximations
(N , relative L∞(S, D), time in min:sec): b) 612, 0.63%, 0:32, c) 913, 0.30%, 1:54 d) 4680,
0.12%, 2:36, e) 8440, 0.049%, 4:39.

5 Results

We tested our approximation method on several models (Table 1). The goal was
to achieve high-quality approximation with L∞ error not larger than 0.05% of the
bounding box diagonal of the corresponding model. We also illustrate that we are
able to quickly produce a relatively coarse fit with tolerance less than 1% and pro-
gressively improve the approximation by investing more time into the fitting pro-
cedure (Fig. 8).

We first compare our algorithm with the B-spline approximation method in [8].
The best approximation of the bunny model presented in that paper has a relative
maximum deviation of 1.44%. The approximating surface consists of 153 patches.
Taking the inter-patch G1 smoothness conditions into account, we count on aver-
age 4 dofs (degrees of freedom) per bi-cubic patch. Note that the actual patches
are defined by more control vertices, however most of them are used up to satisfy
the C0 continuity and the G1 smoothness constraints across the patch boundaries.
The estimated complexity corresponds to 153× 4 = 612 dofs in the approximating
Loop surface, where each dof corresponds to one control vertex. Using our proce-
dure with an initial surface obtained by decimating the bunny model down to 612
vertices and performing 5 parameter correction steps, gives a relative maximum
deviation of 0.63% and takes 32s to compute on 2.8GHz Pentium IV including the
decimation (Fig. 8).

Next we compare our results to the multiresolution subdivision surface fitting tech-
nique proposed in [15] since this is, to our knowledge, the only work where subdi-
vision surfaces have been used to produce high-quality approximations of complex
objects comparable to ours. The algorithm presented in that paper is very efficient
due to the quasi-interpolation fitting and the multiresolution hierarchy. However, as
we show in Fig. 7, the number of degrees of freedom required in [15] for obtain-
ing the same precision is significantly larger (8 times for this example) than in our
method.

Finally we compare our results with the results of the most recent work in the field:
[22]. We have to mention that both methods differ in several aspects. In [22] an ini-

18

Model M initial N final N L∞(%) hours:min

Fig. 1 352K 3518 15347 0.049 0:30

Fig. 7 160K 1600 13642 0.029 0:22

Fig. 8 37K 612 8440 0.048 0:05

Fig. 9 40K 804 4494 0.036 0:03

Fig. 10 546K 4093 17995 0.049 1:04

Fig. 11 51K 2028 4733 0.049 0:06

Fig. 12 31K 307 4698 0.048 0:05
Table 1
Results obtained by the procedure described in Section 4. The L∞ error is given as a per-
centage of the bounding box diagonal of S. J = 5 in all of the experiments and the algo-
rithm converged in less than the maximum allowed (K = 100) optimization steps. Timings
are taken on 2.8GHz Pentium IV with 2GB RAM.

Model M initial N final N L∞(%) avg. error(%) min:sec

Fig. 13 134K 336 1553 0.247 0.0575 08:29

Fig. 14 173K 433 2820 0.248 0.0598 12:26
Table 2
Approximation results of our algorithm for the models on Fig. 13. The L∞ and the average
error (L2(S,D)√

M
) are given as a percentage of the bounding box diagonal of S.

Figure 9. From left to right: Cyberware scan of a machine detail, initial D, final D and base
mesh C0 overlaid on the final D.

tial approximation surface is generated directly from the point cloud, while we use
the triangulation of the original data samples in order to generate the initial control
mesh through decimation. Also while [22] minimizes the approximation error only
with respect to the L2 metric, our work addresses the minimization of both L∞ and
L2 metrics, so it is not surprising that we obtain significantly better results for the
maximum deviation. Therefore in order to compare the both methods on a common

19

Figure 10. Left: an approximation D of the Buddha model. Third and second columns: top
- close-up views of the original data, bottom - close-up views of D. Fourth column:close-up
views of C0 overlaid on D.

Figure 11. Left: an approximation of the Horse model. Right: close-up wire-frame views
from behind on the leg: left - the original mesh, right - Ĉ1. Note the non-uniform density of
the approximating mesh corresponding to the varying geometrical complexity of the model.

ground, we increased the relative target L∞ error tolerance for these experiments
to 0.25%. In this setting our method gives more than 2 times smaller average error
and produces control meshes with significantly less complexity (Table 2). The most
important reason for that is that we use a parameter correction technique and there-
fore all of the original samples are taken into account during the fitting process.
However, because of the same reason, our method requires about 30% more com-
putational time. Instead in [22] a sample correction technique is used. The sample
correction procedure might leave important regions of the original surface under-
sampled (Fig. 2) and in consequence this might affect negatively the approximation

20

Figure 12. Left: an approximation D of the Bust model. Right: solid and wire-frame
close-up views: left - original data, middle - final D and Ĉ2, right - C0 overlaid on D

and Ĉ0.

Figure 13. Approximation of the Igea dataset produced by our method. C0 is shown overlaid
on D.

Figure 14. Approximation of the Armadillo dataset produced by our method. C0 is shown
overlaid on D.

21

error.

6 Future work

The parameter correction procedure, which we use to establish the correspondence
between the samples and the approximating surface, does not guarantee one-to-one
mapping in all cases. Nevertheless, in practice we observed flipping only when the
initial fitting control mesh was extremely coarse and could always be avoided by
allowing enough degrees of freedom from the beginning. The connectivity regular-
ization procedure could be improved using [30]. Full support of piecewise-smooth
subdivision surfaces [32] and a lot of performance optimizations are still pending in
our implementation. We plan also to make more research into possible applications
of the method described in Section 2.3 for reducing even more the complexity of
the control meshes required for high quality approximations.

7 Acknowledgment

This work was partially supported by the European Union Research Training Net-
work "Multiresolution in Geometric modeling (MINGLE)" under grant HPRN-CT-
1999-00117. The Buddha model is courtesy of Igor Guskov and Zoë Wood and is
produced with the procedure described in [33]. The Rocker Arm, the male head,
the Igea and the Armadillo models are courtesy of Cyberware. The Bunny model is
courtesy of the Stanford University. We would like to thank Sergey Alekseev and
Mario Botsch for their help to convert the original models on Fig. 1 and Fig. 7 and
the anonymous reviewers for their constructive comments.

References

[1] C. Loop, Smooth subdivision surfaces based on triangles, Master’s thesis, Department
of Mathematics, University of Utah (1987).

[2] E. Catmull, J. Clark, Recursively generated B-spline surfaces on arbitrary topological
meshes, Computer Aided Geometry Design 10 (6) (1978) 350–355.

[3] J. Stam, Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter
values, in: SIGGRAPH’98, Vol. 32, 1998, pp. 395–404.

[4] J. Stam, Evaluation of Loop subdivision surfaces, in: SIGGRAPH’99 Course notes,
1999.

22

[5] U. Dietz, Erzeugung glatter flähen aus messpunkten, Technikal Report 1717,
Department of Mathematics, University of Darmstadt, Germany (1995).

[6] N. S. Sapidis (Ed.), Designing fair curves and surfaces: shape quality in geometric
modeling and computer-aided design, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1994.

[7] A. Cohen, J.-L. Merrien, L. L. Schumaker (Eds.), Curve and Surface Fitting: Saint-
Malo 2002, Nashboro Press, Brentwood, TN, 2003.

[8] M. Eck, H. Hoppe, Automatic reconstruction of B-spline surfaces of arbitrary
topological type, Computer Graphics 30 (Annual Conference Series) (1996) 325–334.

[9] D. Zorin, P. Schröder, W. Sweldens, T. DeRose, L. Kobbelt, A. Levin, Subdivision for
modeling and animation, in: SIGGRAPH’2000 Course notes, 2000.

[10] M. Halstead, M. Kass, T. DeRose, Efficient, fair interpolation using Catmull-Clark
surfaces, in: Computer Graphics, ACM Press, 1993, pp. 35–44.

[11] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer,
W. Stuetzle, Piecewise smooth surface reconstruction, in: SIGGRAPH’94, 1994, pp.
295–302.

[12] H. Suzuki, S. Takeuchi, T. Kanai, Subdivision surface fitting to a range of points, in:
Pacific Graphics, 1999, pp. 158–167.

[13] S. Takeuchi, H. Suzuki, F. Kimura, T. Kanai, K. Shimada, Subdivision surface fitting
using QEM-based mesh simplification and reconstruction of approximated B-spline
surfaces, in: Pacific Graphics, 2000.

[14] W. Ma, N. Zhao, Catmull-Clark surface fitting for reverse engineering, in: Geometric
Modeling and Processing, 2000, pp. 274–284.

[15] N. Litke, A. Levin, P. Schröder, Fitting subdivision surfaces, in: IEEE Visualization
2001, 2001, pp. 319–324.

[16] A. Lee, H. Moreton, H. Hoppe, Displaced subdivision surfaces, in: K. Akeley (Ed.),
SIGGRAPH’2000, ACM Press / ACM SIGGRAPH / Addison Wesley Longman,
2000, pp. 85–94.

[17] N. Litke, A. Levin, P. Schröder, Trimming for subdivision surfaces, Computer Aided
Geometry Design 18 (5) (2001) 463–481.

[18] W.-K. Jeong, C.-H. Kim, Direct reconstruction of a displaced subdivision surface from
unorganized points, Graph. Models 64 (2) (2002) 78–93.

[19] W. Ma, X. Ma, S.-K. Tso, Z. Pan, Subdivision surface fitting from a dense triangle
mesh, in: Geometric Modeling and Processing, 2002, pp. 94–103.

[20] H. Biermann, D. Kristjansson, D. Zorin, Approximate Boolean operations on free-
form solids, in: SIGGRAPH’2001, 2001, pp. 185–194.

[21] D. Zorin, Subdivision and multiresolution surface representations, Ph.D. thesis,
Caltech, Pasadena, California (1997).

23

[22] D. Cheng, W. Wang, H. Qin, K. K. Wong, H. Yang, Y. Liu, Fitting subdivision surfaces
to unorganized point data using SDM, in: Proceedings of the 12th Pacific Conference
on Computer Graphics and Applications, IEEE Computer Society, 2004, pp. 16–24.

[23] H. Pottmann, S. Leopoldseder, A concept for parametric surface fitting which avoids
the parametrization problem, Computer Aided Geometry Design (20) (2003) 350–355.

[24] T. Elfving, On the conjugate gradient method for solving linear least squares problems,
Tech. Report LiTH-MAT-R-78-3, Linköping University, Sweden (1978).

[25] J. Bolz, P. Schröder, Rapid evaluation of Catmull-Clark subdivision surfaces, in:
Proceeding of the seventh international conference on 3D Web technology, ACM
Press, 2002, pp. 11–17.

[26] N. Aspert, D. Santa-Cruz, T. Ebrahimi, MESH: Measuring errors between surfaces
using the Hausdorff distance, in: Proceedings of the IEEE International Conference
on Multimedia and Expo, Vol. I, 2002, pp. 705 – 708, http://mesh.epfl.ch.

[27] R. P. Brent, Algorithms for Minimization without Derivatives, Prentice-Hall,
Englewood Cliffs, NJ, 1973.

[28] H. Pottmann, M. Hofer, Geometry of the squared distance function to curves and
surfaces, Springer, 2003.

[29] M. Meyer, M. Desbrun, P. Schröder, A. H. Barr, Discrete differential-geometry
operators for triangulated 2-manifolds, in: H.-C. Hege, K. Polthier (Eds.),
Visualization and Mathematics III, Springer-Verlag, Heidelberg, 2003, pp. 35–57.

[30] V. Surazhsky, C. Gotsman, Explicit surface remeshing, in: Proceedings of
Eurographics Symposium on Geometry Processing, 2003, pp. 17–28.

[31] M. Garland, P. S. Heckbert, Surface simplification using quadric error metrics,
Computer Graphics 31 (Annual Conference Series) (1997) 209–216.

[32] D. Zorin, D. Kristjansson, Evaluation of piecewise smooth subdivision surfaces, The
Visual Computer 18 (5-6) (2002) 299–315.

[33] I. Guskov, Z. Wood, Topological noise removal, in: B. Watson, J. W. Buchanan (Eds.),
Proceedings of Graphics Interface, 2001, pp. 19–26.

24

