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Abstract

The representation of freeform surfaces by sufficientlynesfi

since slightly changing the functidncan have drastic effects on the
shape ofs; — including changes in the topology.
In engineering applications it is often desirable to repnésur-

polygonal meshes has become common in many geometric mod-faces as the outer skin of a solid object. Such objects areatjyp

eling applications where complicated objects have to belledn
While working with triangle meshes is flexible and efficiethigre
are difficulties arising prominently from the lack of infiegtimal
smoothness and the prohibitive complexity of highly deti8D-
models. In this paper we discuss the generation of fair gtean
meshes which are optimal with respect to some discretizedheu
ture energy functional. The key issues are the proper defindf
discrete curvature, the smoothing of high resolution meblydilter
operators, and the efficient generation of optimal meshesohy
ing a sparse linear system that characterizes the globaimn of
an energy functional. Results and techniques from diftéakge-
ometry, variational surface design (fairing), and nun@ranalysis
are combined to find efficient and robust algorithms that gere
smooth meshes of arbitrary topology which interpolate qraxi-
mate a given set of data points.

1 Introduction

There are several standard representations for surfacmeggo
each of which is appropriate for specific tasks and operatidhe
most widespread representation in geometric modelingegifuins
areparameteric surfaces FQ € R? — § € R® which enable effi-
cient point sampling by evaluating the functiBrat arbitrary loca-
tions (u,v) € Q. Spline representationare particularly useful due
to their intuitive shape control mechanism based on comtndices
which locally attract the surface and hence enable the desip
generate and modify geometric models by roughly sketchig t
intended surface [18, 8].

Point location and ray intersection computations are mas#ye
performed if a surface is given as a level set

Se = {[x,y,z] e R3|f(xy,2) :c}

of some spatial scalar field: R® — R (implicit surfacey. However
in this representation, shape control and evaluationheratifficult
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constructed by combinations of simple basic shapes likerssh
cones and boxe€pnstructive Solid GeomelryHowever, the lack-
ing shape flexibility of CSG objects makes this techniquejima-
priate for sophisticated freeform modeling applications.

Fig. 1 shows typical examples for the different surfaceespn-
tations. What is common to all of them is the fact that — at some
stage of their processing — they are all converted into agta
mesh representation: the samples on parameteric surfaxesra
nected by edges and triangles [19], implicit surfaces ateeted
by the marching cubes algorithm [27], and CSG objects are han
dled by uniformly tesselating the basic objects up to a pilesd
resolution.

The reason why thigliscretizationis done, is the efficient way
how triangle meshes can be displayed by today’s comput@hgra
ics hardware. Moreover for the sake of efficiency and rotasstn
many algorithms like milling path generation and FE simofat
are preferrably performed on polygonal meshes. Hencegpabl
meshes oexplicit surface$ can be identified as the most versa-
tile general purpose surface representation. Meshesderonaxi-
mum flexibility since arbitrarily complex objects can be stacted
by simply putting together the triangles without having tiserve
complicated mathematical continuity conditions.

The two major difficulties with discrete and explicit surgaep-
resentations are the lacking infinitesimal smoothness laadhigh
complexity. Polygonal models with several millions of triges
have become commonplace since moderately priced 3D sgannin
devices are available. In order to be able to handle the aoitypl
of such meshes on standard PCs and workstations we have to ap-
ply mesh decimation algorithms which reduce the numberiaftr
gles in a given model while minimally changing its geomestiape
[4, 11, 17, 23, 33, 35]. As a byproduct such algorithms also ge
eratehierarchical representationor highly detailed meshes and
thus enable to dynamically adapt tleeel of detailto the available
hardware resources and the application-dependent quedjtyire-
ments.

In this paper we are concerned with the other central prob-
lem, namely thesmoothnessf triangle meshes. Although triangle
meshes can never be smooth in the narrower ser@kadntinuity,
there is an intuitive notion of approximate smoothnessdiscrete
smoothnessFig. 2 shows two meshes which are bath but the
right one obviously is smoother than the left one.

In the next section we will present a more precise definitibn o
discrete curvature Smooth meshes are then characterized by low
discrete curvature. The operators by which curvatures easom-
puted on triangle meshes lead to simple filter algorithms itha
prove the smoothness of an existing mesh by moving the esriic
order to minimize the discrete curvature or its variatiomplying

1we use the ternexplicit surfacessince all vertices of a triangle mesh
have to be enumerated explicitly and there is in general abaglrule how
to compute their position otherwise.



Figure 1: Different representations for surface geomdirgm left to right: Parameteric surfaces map a planer domn&inspace (patches),
implicit surfaces are iso-surfaces of scalar valued vold@ata and CSG objects are defined by joining or intersectisiglshapes. Finally

triangle meshes provide maximum flexibility and maximumacédfncy.
meshes since they have been converted for display.

Figure 2: A mesh model obtained by scanning a human head. On

the left the raw data is shown where noise artifacts are lglees-
ible. On the right a smoother version of the same model is show
Although both models ar@® surfaces, the right one apparently has
an improved distribution of (discrete) curvature.

suchdiscrete fairingalgorithms on different levels of a hierarchical
mesh representation significantly accelerates their cganee.

By combining variational methods from CAGD with the clas-
sical subdivision paradigm where surfaces are computedepy i
atively generating a sequence of finer and finer meshes, weedefi
the so-calledrariational subdivision schemeghich enable the con-
struction of high quality meshes with minimum discrete etuve
and arbitrary topology. Finally we discuss how to integtzaend-
ary conditions into the optimization problem and enumesat@e
application areas.

2 Discrete smoothness

Triangle meshes are piecewise linear surfaces and hennetdas
infinitesimally smooth unless they are planar. Howevemhéf ver-
tices of a triangle mesh are samples from a smooth continsiaus
face then we can approximate that surface increaslinght ty
refining the mesh. The sequence of meshes generated duisng th
process converges to the smooth limit surface and henceatlex
asymptotically smoothThis definition is used to rate the smooth-
ness of stationary subdivision schemes and the expectdityqpfa
meshes generated by their iterative application [7, 32, 41]
However, in most applications we are not dealing with inélyit
refined meshes and hence we have to derive a discrete approxim
tion of the curvature which mimics the properties of the espond-
ing definitions in differential geometry. Namely, we areeirgsted
in finding discrete versions of the first and second fundaaiéotm
because this enables us to transfer the known concepts frem t

In fact, all models shown here are actually represthy triangle

continuous to the discrete setting.

In numerical analysis, discrete approximationslefivativesare
usually obtained by applyindivided difference operatorslf the
values of a function are only known at discrete sample pahes
derivatives are estimated by computing a low-degree pahyalbo
interpolant to the data points and evaluating its deriestivi he idea
behind this construction is that the polynomial interpoleertainly
is a good approximation to any smooth surface passing thrthey
data points. Hence the leading coefficients of their localldara
expansions won't differ very much.

In geometric modeling we are not dealing with functions but
more generally with surfaces. A triangle mesh typically esm
without canonical parameterization and hence in order tivelei-
vided difference operators we first have to find parametaresl
for the mesh vertices. In general, this is a hard problemrifage
quality requirements for the parameterization have to hisfesl
[28]. In our case, however, the problem is not as difficultsiwe
only needlocal parameterizations for the construction of divided
difference operators.

Assume we want to computgecondorder partial derivatives
then we have to computegmadraticlocal interpolant. The interpo-
lation problem is well-defined if we have six independenéiipo-
lation conditions. This means that in order to compute these
order derivatives at some vertpy in the mesh, we have to assign
parameter values to it and to at least five other verticesawitin-
ity. For symmetry reasons we usually take all neighboringices
which are directly connected fmy. If the valence ofpg is higher
than five, we compute an optimal quadratic approximant ihethst
squares sense. If the valence is below five, we can eitherwtenap
least norm solution or we can use a larger neighborhood.

Let py,...,pn be the neighbors gby and we assign the param-
eter valuegu;, Vi) to p; (cf. Fig. 3). Without loss of generality we
assume(ug,Vvo) = (0,0). The linear Vandermonde system for the
(least squares) interpolating polynomial

1 1
F(uv) = F+uRi+vR+ EUZFuu-l-UVFuv-I- EVZFVV

is given by
) Fu
. . . . . R :
U Vi %UIZ U; Vi %Vlz Fuu = Pi — Po
. Fuv .
Fuv

@)
where we exploit thaF = pg. If we denote the matrix in (1) by



each local parameterization such that it becomes (appeiziy)
isometric at(u,v) = (0,0).

There are several heuristics to find such a parameterizafton
most simple one is to estimate a normal veatgrat pg and then
project the neighboring verticgs into the corresponding tangent
plane (cf. Fig. 4). The projected poinps are represented with
respect to an orthonormal basis at the origfin= po. Usually this
basis is found by normalizingy = p} — po andvg = ug x Ng.

(U, Y)

Figure 3: For the construction of the local divided diffecempera-
tors at a specific vertesg, we have to find parameter valugs, v;)
for the direct neighborg; in order to solve the local interpolation
problem.

Figure 4: Projecting the adjacent neighbprsof a vertexpg into
an estimated tangent plane yields parameter valyeg ) for a lo-

then the least squares solution is given b N Sy X .
q 9 y cal parameterization which is isometric @t v) = (0,0), i.e., the

F (discrete) first fundamental form is the identity.

u .

Fv :

Fuu = (VTV)_lvT Pi —Po - . . .

Fuv ) Another heuristic which does not even require to estimatera n

Fov : mal vector is theliscrete exponential mawhich emerges from a
local parameterization in polar coordinates [40]. The peater

The rows of the matri® = (VT V)1V are the coefficients of the values are defined as

divided difference operators. i1 i—1
Obviously there are many degrees of freedom in the choice for (Ui, vi) = hi (COS( z aj), sin( z O(j))
the parameter valudsi,v;) and the remaining question is whether =1 j=1
there are specific choices which are optimal in some sense.
The most simple way to define the values,v;) is by uniform
parameterization

whereh; is proportional to the edge lengfiipi — po|| (geodesic dis-
tance) and the angke; is proportional to the anglé(p;, o, Pj+1)
such that

(U, Vi) = (cos(zni/n), sin(2ni/n)). Zlo‘i =2n
j=

The advantage of this choice is that the maBixiepends only on  All these heuristics uniquely define the parameter vajugs;) up
the valencen of po. Hence, the coefficients for the divided dif-  to rotations around the origin in the parameter plane. Hewév
ference operators can be computed in advance for each feossib turns out that although the second order partial derivatiand

valencen=3/4,... hence the second fundamental form) depends on the oriamiati

However from scattered data interpolation techniques vasvkn  the parameter plane, the curvature valbied<, andT do not (ro-
that the uniform parameterization often leads to ratheribipo- tation invariance) [1]. Consequently, we can arbitraritypase the
lating polynomials. The approximation of the data can berowpd orientation, e.g., by forcinguy, v1) to lie on theu-axis.

by adapting the parameterization to the spatial configumadf the

verticesp;. Moreover, when rating the smoothness or fairness ofa  ope immediate application of the discrete curvature esiima
triangle mesh we are not so much interested in partial dere& 5 meshes is the detection and visualization of surfacéacti

with respect to some arbitrary parameterization but ounieia When real objects are scanned or mechanical deformation pro

goal is to find approximations of the principal curvatukgsandk. cesses are simulated numerically, the resulting surfaomgey is

or their combinations” = kf + K5 (total curvature)H = Ky + k2 often given as a mere polygonal mesh with no additional shape

(mean curvature), df = K1 Kz (Gaussian curvature). formation. Reverse engineeririg necessary to obtain a continuous
It is a well-known theorem in differential geometry thgt H, representation on which curvature analysis can be done.

andK are simple (linear or quadratic) combinations of the second  jith the divided difference operators available, we cart fie

order partial derivatives if the parameterizatiorisgemetric This color coded discrete curvature directly on the given meshhance

means that both tangent vectésandFy have unitlength and are e syrface interrogatiorcan be performed without reconstructing

perpendicular to each other. In general there is no isomglivbal a full-size CAD model.

parameterization for surfaces unléss= 0 everywhere. Fig. 5 shows a typical mesh for finite element analysis. Therco
For the derivation of the divided difference operators, &esy, coded mean curvaturd is plotted directly on the mesh such that

we need a consistent parameterization only in a small nergliod cylindrical and flat regions are clearly visible due to canstolor.

of each vertex. We can choose these local parameterizatidas

pendent from each other because we construct a custonethget

of divided difference operators for each vertex. This mahaswe 3 Discrete Fairi ng

can assign different parameter values to the same vertesaf pa-

rameterizations are overlapping. Since the Taylor coefiitsiF,,, Once we know how to compute curvatures on triangle meshes, th
Fuv, andRyy are evaluated at the center poi0,0) = pg we tune next step is to use this information for optimizing the faiss of a



Figure 5: Precise curvature analysis on polygonal mesh inada
be performed by using locally adapted divided differencerators.
This enables direct surface interrogation on discrete dittzout
reverse engineering of CAD models.

given mesh by reducing its curvature or the variation of ite/a-
ture.

A standard measure for the global surface quality in gedmetr
modeling is the thin plate energy [30, 34]

/K§+@.
S

This geometric functional is rather difficult to handle arehbe it
is usually approximated by its "linearized” version

E(S) )

E(S) ~ /Q F2,+2F2 +F2 @3)
where the quality of the total curvature’s approximation thg
squared second partial derivatives depends on how straimeylgc-
tual parameterizatioR (u,v) deviates from an isometric parameter-
ization. The effect of this approximation error on the résglmin-
imum energy surface is very difficult to estimate. If we arengs
polynomial splines, then the functional (3) can obvioustydval-
uated exactly. Even for subdivision surfaces which emerge f
generalized B-spline subdivision, the value of (3) can bemated
from the given control mesh [16, 29].

In the discrete setting, the integral can be approximatea by
weighted sum over all verticegfadrature formuland the partial
derivatives are approximated by divided differences:

E(S)

2 2 2
> w ((z O(i,jpi,j) +2(z Bi,jpi,j) + (Z \ﬁ,jpi,j) >
i ] ] ]
4

Herep;j j are the neighbors of the vertgx anda; j, Bj j, andy;
are the coefficients of the second order divided differeratgs
which are obtained by solving the local interpolation peshl The
weight coefficientsw; represent the discrete surface element, i.e.
their sizes are proportional to the surface area that i<aged with
the corresponding vertgx. Hence, a good choice fog is the sum
of the adjacent triangles’ areas (constant factors do nttema

The important advantage of the discrete functional (4) & th
the local divided difference operators can be constructitd re-
spect to locally isometric parameterizations while theticnrous
functional (3) requires a global (or at least patch-wideppzeter-
ization. Hence in the discrete setting, the original fuorail (2)
is properly sampled and the approximation (of the functipoan
be improved by reducing the sample step width, i.e. by readinin
the mesh. In the continuous setting the approximation dresr
tween (2) and (3) cannot be reduced by refining the splineespac
since this does not change the planarity of the parameteaitiom

Q which is the source for the distorsion of the parameteorat-
non-isometry) [12]. Fig. 6 demonstrates the effects regyifrom
the difference between both types of approximation.

The functionalE(.S) is quadratic in every vertex and hence its
partial derivatives are linear expressions. The uniquarmim of
E(S) is found if all partial derivatives with respect to the veets
vanish. We find

0E(S)
opi

= ZWi,k Pk = 0 (5)

where the sum in fact ranges over all direct neighbons; @ind all
their neighbors (2-ring neighborhood) because all othgrvanish.

Equation (5) is one row of a large linear system whose salutio
is the minimum energy mesh. The number of rows in this linear
system equals the number of vertices which can be moved/freel
in order to reduce the global energy. The system is sparse &in
every row only the entries corresponding to vertices in thn@
neighborhood are non-vanishing.

The easiest way to solve such a system is by an iterative
alogrithm like the Gau3-Seidel scheme. We solve each rothéor
diagonal element

b= -~ ()

Wi
W i,k Pk
which yields a local update rule. By repeatedly cycling tlglo the
vertices and applying the update rule, the discrete thite@aergy

(4) is iteratively reduced.

As we will discuss in Section 6 we additionally have to define
proper boundary conditions for the optimization problentsioth-
erwise the mesh will collapse eventually.

Ignoring this fact, we can still apply the Gaul3-Seidel update
like a linear filter operation in order to remove high fregagnoise
from the mesh data. The reason why this works is because ¢he sp
cial spectral properties of the iteration matrix imply ticatnver-
gence is fast in high frequency subspaces and rather sloanin |
frequency subspaces. Hence the noise which affects evieey ot
vertex in the mesh is removed after a few iterations whilgdafea-
tures are more or less preserved. Intuitively, this behavian be
explained by the observation that the local update rulectifiey
reduces the curvature by considering only a small portiothef
mesh while such changings propagate very slowly to morarmtist
mesh regions.

Notice that although the global convergence of the itegativ
scheme is slow, we still observe slight changings in the alob
shape: the application of the update rule as a mere filteratipar
causes a global shrinking effect [36]. This cannot happ@ndper
boundary conditions are imposed.

In the above heuristics, we used the geometric constellatio
a vertexp; and its neighborg; j to derive a locally isometric pa-
rameterization. Since this constellation changes dutiegterative
updating it seems reasonable to also update the local paedme
zation. Assuming that the current mesh is always the bestkno
approximation to the optimal mesh, it might make sense imes¢
the local surface metric based on this information.

However, besides the high computational costs for repbated
computing the coefficients of the divided difference oparathe
major argument against this strategy is the instabilityhef tesult-
ing scheme. If we change the parameterization after evergtion
we in fact also change the underlying energy functional ihab
be minimized. Hence there is no reason to assume that th&dter
will ever converge.

Since each asymmetry in the neighborhood of a vepgeis
balanced by adapting the local parameterization, the grfarg-



Figure 6: The triangle mesh on the left is to be interpolatgd Burface which minimizes the thin plate energy. In theeetihe geometric
functional is approximated by the continuous quadraticfiomal with respect to some uniform parameterization Wtdoes ignore the
unequal distribution of interpolation points. Consequetiite resulting surface has a rather uniform distributibmesh vertices (center left).
This surface (center) is optimal but with respect towrengfunctional! For the surface on the right a parameterizaltias been used which
adapts to the given surface’s metric. Hence divided diffees are computed with respect to locally isometric paranzettions and the true
functional is approximated much better. The vertex digtidn on the mesh is similar to the distribution in the oreimesh (center right).

tional’s gradient implies no force component actimighin the tan- within the continuous spectrum of resolutions provided hyra
gent plane. Consequently, the resulting non-linear systecomes gressive mesh representation. We combine sub-sequenees- of
unstable because vertices can move freely on the surfaceexFo  tex split operations or edge collapses into (macro-) upsarmpd
ample a sphere is a surface with minimum curvature variatlbn downsample operations. Criteria for the distinct levels ba the
we have a mesh with vertices lying on a sphere then we obtain th exponential growth in complexity by a certain factor, thenowal

same curvature estimate for each vertex (under the assamtptt or insertion of an independent set of vertices, or a specificage

the local divided difference operators are properly adjdist Al- edge length on each level of detail. Here, a set of verticealisd

lowing the parameterization to be updated during the i@mdéads independent if the neighborhoods which are affected by theee

to a situation where the vertices can flow freely on the spt&oene sponding collapse operations are disjoint.

authors tried to cope with this problem by restructuring rinesh, A complete V-cycle multi-level algorithm consists of theldov-

i.e. edges are flipped when the local triangle distorsionatés ing operations: theestriction operatormaps the original data to

some upper bound [40], but this is not appropriate in manyiegp a coarser level, thierative solverapproximates the solution by

tions. running several Gau3-Seidel update cycles on the coardg thes
Hence, in order to stabilize the optimization problem, weshta prolongation operatoreconstructs the original fine mesh topology,

apply the iterative mesh filtering with divided differencgenators and some more update iterations on the fine mesh yield the final

being constructed once for a fixed parameterization. Tlieudifies result. Notice that the restriction and prolongation can over

with this fixed parameterization emerge from the fact thataee several refinement levels.

to estimate the surface metric of the result a priori. In ficac it When using this technique in the context of mesh filtering, we

turns out that the heuristics of Sect. 2 lead to satisfaatesylts. can exploit the typical convergence behaviour of the Gagideb

In Sect. 5 we will come back to this issue in a slightly differe update for the design of sophisticated geometric low-pdies<i

context. The schedule of these filters is similar to the V-cycle aldpon. We

first apply mesh decimation to the given mesh until all theaitliet
that is to be filtered is removed. On this level of detail watsta

4 Multi-level smoothing alternating the re-insertion of vertices by vertex splitd the itera-
tive mesh smoothing by GauRR-Seidel updates. Since on easlh le

Although the update rule (6) works like an effective filteeogtion the highest frequency noise is removed, we eventually enslitip

to remove high frequency noise from a given mesh, its globat ¢~ a mesh that has the same connectivity as the original oneibut w

vergence is rather slow. A standard technique in numeritalyais the geometric detail removed (cf. Fig. 7). In [13] this gexlieed

to deal with such situations are multi-level approachesrevtiee notion of signal processing for triangle meshes is investid in

same optimization problem is solved on different levelsethd in more detail.

order to accelerate the global convergence [14]. The ideade

this approach is that iterations on coarse levels are chahpence .. Lo

a feasible solution can be obtained. This coarse-scal¢icolis 5 \Variational subdivision
prolongatedin order to find a good starting configuration for the

iterative solver on the next finer level. The prolongatiorrapor In the last section, we discussed the situation when a finagie

is designed such that the error on the finer level is mostli frigr mesh is given and discrete fairing techniques are appliedgoove
quency and hence can be reduced effectively by the updatewd its quality. A rather different setup in freeform modelisghe scat-

can mimic this behaviour in our mesh filtering setting by g tered data interpolation problem where only few points iacgpare

the GauR-Seidel update rule (6) to a hierarchical repraentof given and a smooth interpolating surface is sought. Theloggo

the mesh. of the interpolating surface is usually part of the inputaddtience

For an arbitrary mesh, a hierarchical structure emerges fhe the given data points usually come as the vertices of a caarse

application of a mesh decimation algorithm. In [24] a seqeen angle mesh.anq we want to generate.a refined me;h Wlth the same
of nested unstructured meshes is generated by successivedy- topology which interpolates or approximates the origirahfs.

ing vertices from a given mesh by edge collapdese({to-coarse
hierarchy). Starting on a coarse scale, we can reconstruct finer res-
olutions (and eventually the original mesh) by applyingitherse
operations (vertex splits) in reverse ordemgressive mesheg 7]. The most effective technique in the context of geometric ehod
There are different ways to define distinct levels of resotut ing with polygonal meshes amubdivision schemesA subdivi-

5.1 Subdivision operators



Figure 7: The effect of the V-cycle multi-level smoothingn @e left top the original bunny data set is shown. If we applysmoothing
update operator, we obtain the result on the left bottomy @ highest frequency noise is removed since the conveegamlower frequency
bands is too slow. We can apply mesh decimation (restrictmswitch to coarser levels of detail (top row, left-tohty Alternating mesh
smoothing and re-insertion of the vertices yields the sadan the bottom row. All meshes in the bottom row have theesemmnectivity.

Notice how the degree by which detail information is remQwamresponds to the coarseness of the base mesh in the &/sgretme (top
row).

sion scheme is given by a set of rules to refine a polygonakalont
mesh. By iteratively applying these rules, we generate aesesp
of meshes which eventually converge to a smooth limit ser{at
Fig. 8). This technique is very similar to the knot-insemtioper-
ation for spline surfaces [25]. Inserting a knot-line inte tspline
representation of a surface requires the computation ofoostrol

vertices according to simple rules (linear combinationsldfcon-
trol vertices). Itis well-known that the control meshesange to
the spline surface if the knot-lines eventually become e¢as].

Subdivision schemes are a generalization of knot-ingeitiche
sense that the refinement rules of a subdivision scheme cap-be
plied to arbitrary meshes, i.e., the tensor-product regulef spline
control meshes is not required. This enables the generatisar-
faces with arbitrary topology and not only triangular or drilat-
eral patches.

The subdivision operator always consists of two parts. Tisé fi

Figure 8: Subdivision schemes can be applied to arbitraghes
The advantages of spline surfaces (built-in smoothnesméauitive
local shape control by control vertices) are preserved thi¢had-
ditional flexibility that smooth surfaces with arbitrarypimogy can
be generated.

is a topological split operation by which new control vegsiare in- lates all intermediate control vertices. The other classtlaenon-
serted into the mesh. The split operation is chasgformsuch that interpolatoryschemes where all vertices are shifted by the smooth-
all new vertices are regular and the number of extraordinerjces ing operator. In this case the limit surface only approxisahe
in the refined meshes is constastlfdivision connectivijy The control vertices (cf. cubic spline curves and their confrallygon).
second part is a smoothing operator which moves the congrel v For all important settings, i.e., interpolatory / non-ipilatory

tices according to weighted averages of neighboring \estidhe and triangle meshes / quadrilateral meshes, there arersafi
weights of the smoothing rule usually depend on the valehteeo subdivision schemes which gener&tk continuous limit surfaces
vertices only. In Fig. 9 a typical sequence of meshes gesiat [2, 5, 26, 6, 21, 42]. However in terms sbrface fairnessthe

this process is shown. This type of subdivision operatomled global C! continuity is sometimes not sufficient. This is why in
stationarysince the same rule is applied in each step of the iterative sophisticated geometric modeling applications the qualitsur-
refinement. faces is usually measured by some physically based gloleatjgn

There are two major classes of subdivision schemes. Ong clas functional [3, 15, 30, 34, 39].
are theinterpolatoryschemes which do not change the position of We can combine the two techniques, i.e., the high qualitiasar
the old vertices (and hence the refined mesh always integsaiae generation by energy minimization (variational modelifajring)
coarser one). For interpolatory schemes, the limit surfatzpo- and the generation of surfaces with arbitrary topology bydsu
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Figure 9: A sequence of meshes generated by a stationariysiti scheme. From left to right we alternatingly applg tplit operator and

the smoothing operator.

vision schemes, in the following way: Instead of using thedix
smoothing rules of stationary subdivision schemes, weepthe
vertices in the refined mesh such that a global energy fumattis
minimized [20, 22, 37, 38]. Since otherwise the algorithstizic-
ture of subdivision schemes is preserved, we call such itthgos:
variational subdivision schemes

As we discussed in the last section, global energy minimiza-
tion requires the solution of a sparse linear system. Hehee t
refinement operator of a variational subdivision schemesists
of a splitting step which introduces new degrees of freedom f
the optimization and the stationary smoothing operatoejdaced
by the GauRR-Seidel update rules of an iterative solver. Ah ea
Gaul3-Seidel step merely computes a linear combinationarbge
vertices, the computational complexity of variational divtsion
schemes is not significantly higher than for stationary sweif
the number of GauRR-Seidel iterations is bounded (in facinatant
factor).

On the other hand, the alternating splitting step and Gai@e$
iteration can be considered as a multi-level algorithm é&dwisg the
optimization problem on the finest resolution level. Henagja-
tional subdivision is an efficient method for computing mestvith
minimum discrete curvature energy.

In order to guarantee that the resulting fine mesh interpsléite
originally given vertices, the Gaul3-Seidel updates musbeap-
plied to those vertices which already belong to the initiasim All
other vertices are allowed to move in every step of the variat
refinement scheme. A variant of the variational refinememeduale
is to apply the update rule only to those vertices which asertied
in the current step of the iterative refinement. If all others kept
fixed then this variant acts like an interpolatory subdiisscheme.
Obviously, the variant that movedl vertices which are not part of
the initial mesh, leads to a superior mesh quality. Nevéetse the
convergence can be accelerated if only the new vertices avedn
on every refinement level.

Keeping several vertices fixed during the iterative energyi-m
mization prevents the mesh from shrinking and collapsintys s
important because the iterative solver does not convergentan-
degenerate solution if no proper boundary conditions are Ae
more detailed discussion on boundary conditions can bedfaun
Sect. 6.

5.2 Local parameterization

The remaining open problem in the definition of a variatiorel
finement scheme is to find a local parameterization for eadiexe
in order to compute the coefficients of the local dividedetiénce
operators. In the simplest case, we choose the uniform garam
terization and precompute the weight coefficients for aligiiole
valences mbrella algorithm[24]). This is possible since the use
of a uniform split operator for the mesh refinement leads tetras
with subdivision connectivity where all but the originaltiees are
regular (i.e. have valence 6).

Figure 10: In a subdivision connectivity mesh, the neighbod
of a face-vertex always has the structure of an affine grideathie
neighborhood of an edge-vertex looks like two affine gridetimng
along a straight line. Only the neighborhood of the extramng
vertices (right) has all degrees of freedom for the locahpwateri-
zation.

The situation is more difficult if we want to apply the more so-
phisticated heuristics that lead to approximately isormédrcal pa-
rameterizations. The difficulties arise from the fact thateannot
take the spatial configuration of the neighboring verticge ac-
count because there is no canonical starting position fongwly
inserted vertices. Hence we cannot project the neighbarlitto
an estimated tangent plane or compute length and angles path
rameter domain. One way to get around this problem would be to
compute a tentative solution, e.g., by using the uniformapes-
terization. Based on this solution, a better parametéoizatould
be estimated. However, adapting the parameterizationetdatt
iteration’s solution leads to instability of the iteratigégorithm as
pointed out at the end of section 3.

A feasible solution to the parameterization problem hassti e
mate the local parameterization without knowing the acpaei-
tions of the vertices. In [22] a solution to this problem isposed
which is based on the following considerations. First, irubd-
vision connectivity mesh there are three different clasfeger-
tices. Extraordinary verticecorrespond to the vertices of the orig-
inal meshedge-verticesopologically lie on an edge of the original
mesh andace-verticedie somewhere in the interior of an original
triangle. Due to the local (semi-) regularity of subdivisiconnec-
tivity meshes we can find associatesnplatedor local parameter-
izations (cf. Fig 10).

In the neighborhood of a face-vertex the parameter values ca
be sampled from an affine grid. This is natural since subidnis
meshes are regular within the original base triangles. fédsces
the degrees of freedom to three (two angles and one edgé)engt
For edge-vertices a natural parameterization is pieceafise, i.e.,
affine over the three triangles belonging to the one or theraid-
jacent base triangle respectively. Hence, there are ordydfesgrees
of freedom (four angles and one edge length). Finally foreke
traordinary vertices, arbitrary parameterizations al@nadd since
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Figure 11: A local parameterization for an extraordinarytese
can be extrapolated to obtain a (semi-regular) paramaterizfor
the whole parameter planerystal seefl This parameterization
is piecewise affine in each sector. Hence the induced paeaizeet
tions for the neighboring vertices match the corresponténgplate
definitions and can be used for the blending operation.

6 Boundary conditions

Variational subdivision schemes generate smooth meslagsnth
terpolate the originally given vertices of the initial basesh. The
underlying discrete optimization problem becomes welgzbbe-
cause the interpolation conditions make its solution uaida the
more general setting of discrete fairing in Sect. 3, we didexplic-
itly solve optimization problems but we merely applied thauG-
Seidel update rules as low-pass filters to the mesh. By ekpioi
the special convergence behaviour of these operators, weea
rive effective low-pass filters with adjustable pass-barddiency.
However, in terms of mesh optimization, the proposed aflgors
do not make any sense if the underlying optimization probiem
ill-posed.

In order to turn the heuristic mesh filtering into an iterata-
gorithm for solving a well-posed optimization problem, weed to
impose non-homogeneous boundary conditions. In the cobofex
geometric modeling the typical boundary conditions arerjpla-
tion constraints for surface points and/or normal vectors.

In the global linear system characterizing the optimal meahh
constraint provides another row. The trivial case is therjmtlation
of a pointP in space by some mesh vertgx Here, an additional

we cannot make any assumptions on their valence or the kpatia row

configuration of their neighbors.

When setting up a variational subdivision scheme we statft wi
the initial (coarse) mesh where all vertex positions aremisince
they provide the interpolation constraints for the optiati@n prob-
lem. We can estimate a local parameterization for each afrige
nal vertices by using one of the heuristics leading to losadrietry
(e.g. projection into the tangent plane or exponential meam-
eterization). The crucial idea is then to define the locahpeater-
izations for the edge- and face-vertices (which are indedtging
the split operation) bplendingthe parameterizations of the nearest
extraordinary vertices. The motivation for this approasithie no-
tion that for smooth meshes, the distribution of the unifgamples
within one base triangle should be as equal as possible. dtbec
difference between neighboring parameterizations shbetme
smaller on higher refinement levels.

A priori, the blending operation for local parameterizaias
not well-defined but since we use the above templates fordge-e
and face-vertices, we can simply blend the free paramedegids
and edge lengths) to obtain parameterizations for therradiate
vertices.

The local parameterization for the extraordinary vertaets like
a crystal seed which uniquely defines affine and bi-affinemater-
izations for each sector in its vicinity (cf. Fig. 11). We aase the
template parameters of these prototypical parametesizmtind do
barycentric blending along base mesh edges and across leabe m
triangles (cf. Fig. 12).

Variational subdivision schemes can be implemented vdiy ef
ciently. Besides the iterative application of the Gauld8kipdate
rules, there is a small overhead for the computation of thieleld
difference coefficients. This has to be done only once foh eac-
tex since the local parameterization of a coarse-scalexeltes
not change on higher refinement levels.

As the alternating refinement and smoothing corresponds to a

multi-level algorithm for solving the optimization prolofeon the
finest level, only a constant number of Gaul3-Seidel itematic
necessary on each intermediate level. This leads to cotmmah
cost which are linear in the number of triangles of the résglt
mesh. In our current implementation of variational sutsion, we
generate about KO\ per second on a 250 Mhz / R10K SGI work-
station.

Il
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(...,0,1,0,...) F;i @)

is added as thih row into the global system. In the Gaul3-Seidel
algorithm this constraint is satisfied by simply skipping tipdate

of pi when cycling through the mesh vertices. If the péins to be
interpolated in thénterior of a triangleT = A(pj,pj,pk) we have

to specify the interpolation condition by barycentric atioatesq,

B, andy within the triangleT. The resulting row for the global
system is

Pi
pj | =P
Pk

(...,a,...,B,...,y,...)

In practice it can be observed that the iterative solverveme
faster, if the interpolation constraints are imposed witttie inte-
rior of triangles instead of at the vertices. For symmetgsons
the update steps for the three vertipgspj, andpy are combined.
The three vertices are shifted in order to re-establishritexpola-
tion condition while altering the geometry of the mesh atelias
possible. Let be the correction vector

¢ = P—api—PBpj—VYpk

then we distribute the correction among the three vertiges b

Pi += arpry©
Pi += g ©
- y
Pk += mc

such that the mesh modification is minimal in the least square
sense (least norm solution for the update vectors). Noliaethe
three vertices are subject to an energy reducing updaténsteged

by the global energy functional. Hence the interpolationdition

is violated during the energy minimization and then re-ecgéd
when processing the constraint. The symmetric treatmetheof



Figure 12: Defining local parameterizations by blendinghgla base edge. The local parameterizations of the two ediraoy vertices
p andq induce bi-affine parameterizations for their direct neiyistp andq. The template parameters of these parameterizatmn®,)

and(ag,bq) can be used for weighted blending along the base edge whisiectsp andq. The coefficienta,, by ) then define the local
parameterization for the vertex= (1—u)p + ug. The same technique can be used for the face-vertices imtéeor of a base triangle

where we use barycentric weights for the blending.

interpolation constraint is necessary since the corredipgrrow in
the linear system might not be diagonal dominant and heree th
iterative solving algorithm might turn instable otherwise

The interpolation ohormal vectords most easily achieved by
freezing all three vertices of a triangular face. This imgsoa po-
sitional and normal constraint on the mesh. Other formarestifor
normal constraints based on the vanishing inner product extm
edges with the normal vector, tend to make the iterativeisglv
algorithm unstable due to lacking diagonal dominance.

In many applications, strict interpolation constraints aot nat-
ural and approximation constraints within a prescribedrtoicee
make more sense, e.g., when the input data is disturbed bg.noi
Instead of freezing the position of some mesh vertices, wdroa
plementapproximation constraint®y projecting the constrained
vertices back to am-sphere around the approximation points af-
ter every Gaul3-Seidel iteration. This simple approxinmaticheme
however uses aisotropic error metric which is too strict in many
cases.

If we assume the interpolating mesh to be locally flat then the
approximation error has to be measured in normal directidy o
(anisotropic error metric This provides more flexibility such that
the mesh can relax within the tangent plane. It mimics theceff
of the parameter correction in classical scattered datagatation
[18].

For a given interpolation poirR® with (estimated) normal vector
N, the approximation error is measured By=|(p; — P)TN|. In
case this error is larger than the prescribede projectp; back to
a plane which is parallel to the tangent plane:

((Pi=P)TN=¢)N

Notice that at the mesh boundaries, a different distanteron has
to be used since projecting the approximation error ontatueal
vector cannot prevent shrinking effects for open surfaces.

Pi

7 Applications

With the effective and flexible techniques discrete fairingand
variational subdivision schemesailable, we can use polygonal

mesh representations for various standard problems vifkiarea
of sophisticated free form surface modeling. The overgikctive

behind all the applications we are presenting is the attéorgtoid,

bypass, or at least delay the mathematically involved geiver of

spline CAD-models whenever it is appropriate.

Especially in the early design stageigceptual designit is
usually not necessary to have a spline parameterizationsof-a
face. The focus on polygonal mesh representations mighpttoel
free the creative designer from being confined by mathealate
strictions. In later stages the conversion into a spline ehadn
be based on more reliable information about the intendegesha
Moreover, since technical engineers are used to perfornerioah
simulations on polygonal approximations of the true modghay,
we also might find short-cuts that allow to speed up the twootad
cycles in the design process, e.g., we could alter the sHapmme-
chanical part by modifying the FE-mesh directly withoutwering
back and forth between different CAD-models.

7.1 Scattered data interpolation

One area where the discrete fairing approach can be applibe i
filling of undefined regions in a CAD model or in a measured data
set. Of course, such problems can be solved by fairing scheme
based on spline surfaces as well. However, the discreiadaap-
proach allows one to split the overall (quite involved) tagk sim-
ple steps: we always start by constructing a triangle meghide
the global topology. This is easy becauseGloor higher bound-
ary conditions have to be satisfied. Then we can apply tha-vari
tional subdivision technique to generate a sufficientlysaepiece-
wise regular point set on the objective surface. This paiugfes
the refinement and energy minimization but it is almost caigty
automatic and does not have to be adapted to the particybéir ap
cation. In a last step we can fit polynomial patches to the edfin
data. Here we can restrict ourselves to pure fitting sincddine
ing part has already been taken care of during the generafion
the dense data. In other words, the discrete fairing haveeed
enough information about an optimal surface such that istpss
close as possible to the generated points (in a least sqeees) is
expected to lead to high quality surfaces.

Consider the point data in Figure 13. The very sparselyesatt
points in the middle region make the task of interpolatiadheadif-
ficult since the least squares matrix for a locally suppoRexpline



basis might become singular. To avoid this, fairing termsefta be
included into the objective functional. This however bergck all
the problems mentioned earlier concerning the possibly poal-
ity of parameter dependent energy functionals and the bitor
complexity of non-linear optimization.

Alternatively, we can connect the points to build a spatial t
angulation. Variational subdivision then recovers thesinig in-
formation under the assumption that the original surface sfi-
ciently fair. The uneven distribution of the measured daiats and
the strong distortion in the initial triangulation do nousa severe
instabilities since we define individual parameterizaifor every
vertex when computing the divided difference coefficieffthese
enable to take the local geometry into account.

Figure 13: The original data on the left is very sparse in thd m
dle region of the object. Triangulating the points in spaoe dis-
cretely fairing the iteratively refined mesh recovers maoferima-
tion which makes least squares approximation much easieth®©
right, reflection lines on the resulting spline surface &@s.

7.2 Filleting and blending

Another standard problem in CAD is thendingor filleting be-
tween surfaces. Consider the simple configuration in Fidure
where several plane faces (dark grey) are to be connecteatisiyio
We first close the gap with a coarse triangle mesh. Such a na@sh c
easily be constructed for any reasonable configuration mitich
less effort than constructing a piecewise polynomial repnéation.
The boundary of this initial mesh is obtained by samplingste
faces to be joined.

We then refine the mesh and, again, apply the discrete fairag
chinery. The smoothness of the connection to the predefiagd p
of the geometry is guaranteed by letting the blend surfacehme
overlap with the given faces by one row of triangles (all rssesy
point information is obtained by sampling the given surcd&he
vertices of the triangles belonging to the original geosnate not
allowed to move but since they participate in the globalnfess
functional they enforce a smooth connection. As this cpoeds
to the discret€! boundary constraints of Sect. 6 where points and
normals are fixed, the discrete blending technique is absole
the Hermite-type interpolation problem.

7.3 Applications to multiresolution modeling

In [24] we describe how to use the discrete fairing techniguée
context of a multiresolution modeling tool which is able togess
triangle meshes with arbitrary connectivity. The centcea is to
build up multiresolution decompositions based on the hiafiaal
representation of meshes. Since we do not assume any spatial
nectivity, the hierarchy has to be build from fine to coarseising
a mesh decimation algorithm.

Figure 14: Creating a “monkey saddle" blend surface joirsing
prescribed planes. Any blend surface can be generated binglo
the gap with a triangle mesh first and then applying variatisob-
division.

Standard multiresolution decompositions for meshes whieh
based on stationary subdivision schemes require the fina toes
have subdivision connectivity. Starting on a coarse levaletail
in such a decomposition we can either reconstruct the ailigiata
by re-inserting the detail information that has been rerdader-
ing decomposition or we can apply the plain stationary stiidin
operator to obtain a smoothed version of the original mesle W
call the resulting representatimoarse-to-fine hierarchgince the
coarsest base mesh completely determines the structuteref a
finement levels.

For mesh hierarchies emerging from the application of a mesh
decimation algorithm, the nested levels of detail are Iftgtn fine-
to-coarse. The finest refinement level is the original meskthvh
can have arbitrary connectivity. The next coarser levekisegated
by performing the decimation until a certain criterion istm&he
decimation is usually implemented leglge collapsesuch that we
can reconstruct the original mesh by applying the corredipon
vertex splitoperations in reverse order.

However, this technique only yieldg@pological hierarchywith
differently coarselevels of detail. In the standard coarse-to-fine
setting, the analogouwgeometric hierarchyvith differently smooth
levels of detail is obtained by applying the underlying istaary
subdivision scheme without detail reconstruction. In tterppro-
gressive mesh setting we can go coarse to fine only by retimger
the previously removed vertices. This, however, hecdgsagon-
structs the detail and does not provide geometric leveletsid

In order to obtain true multiresolution semantics on aabjtr
meshes, we have to compute a geometric hierarchy. For this we
first re-insert the vertices by vertex splits. Once the refiegel of
resolution is reconstructed, we apply discrete fairinchveill ver-
tices from the coarser level fixed and the new ones being atlde
move. Eventually, this yields a mesh with the same connects
the original one but with the geometric detail removed. Thih-
nigue works since discrete fairing can be applied to mesh#s w
arbitrary connectivity.

The geometric difference between the original mesh and its
smoothed version provides a multiresolution decompasito ar-
bitrary meshes. For reasonable reconstruction of the |cstar
the global shape has been modifi@duftiresolution modelingwe
have to encode the position of the original mesh’s vertietetive
to the local geometry of the smoother mekitél frame$. Notice
that simply storing the difference between the originatexepo-
sition and its position after the discrete fairing is not ieympiate
since then the detail reconstruction can produce shafacastiif
the tangent plane of the smooth geometry changes [9, 10].

Based on this multiresolution representation for arbjtrar
meshes, we implemented the flexible mesh modeling tddii D.
Fig. 15 demonstrates the interaction metaphor that enablgss-
ticated modeling operations in realtime.



Figure 15: A flexible metaphor for multiresolution edits. @ left, the original mesh is shown. The black line definesrégion of the
mesh which is subject to the modification. The white line defithe handle geometry which can be moved by the designdr.iBandaries
can have an arbitrary shape and hence they can, e.g., bediligigeometric features in the mesh. The boundary and thiehamposeC?
andC? boundary conditions to the mesh and the smooth version afriginal mesh is found by applying discrete fairing whilesebving
these boundary constraints. The center left shows thetrefstiie curvature minimization (the boundary and the hamdéeinterpolated).
The geometric difference between the two left meshes igdtas detail information with respect to loacal frames. Noe designer can
move the handle polygon and this changes the boundary aeamstfor the curvature minimization. Hence the discreidrfa generates a
modified smooth mesh (center right). Adding the previousiyesl detail information yields the final result on the rigBince we can apply
fast multi-level smoothing when solving the optimizatiawlplem, the modified mesh can be updated with several fragressgond during
the modeling operation. Notice that all four meshes havesdnee connectivity.

8 Conclusion

In this paper we gave a survey of discrete fairing and vamai
subdivision methods which combine several powerful tempies
The major features are thatdgoo
approximations for geometric curvatures can be computedsby
ing divided difference operators with respect to local pseteriza-
tions, arbitrary topology surfaces can be handled by adgefifec-
tive subdivision techniques, and highly efficient iteratalgorithms

for freeform surface design.

for computing optimal meshes result from generalizing ivaitel
methods to nested grids with arbitrary connectivity.

This general technique can be used in all areas of geometde m
eling and CAD/CAM where an approximation of the actual sur-
face by a reasonably fine triangle mesh is a sufficient reptase
tion. If compatibility to standard CAD formats matters, dirsp
fitting post-process has to follow the discrete surface geita or
modification. This fitting step can rely on densely samplddrin
mation about the intended shape if variational subdivissomsed.
Moreover, the discrete fairing technique enables the gdimar
tion of multiresolution modeling semantics to arbitrarynectivity

meshes.

[4] A. Ciampalini and P. Cignoni and C. Montani and R.

(5]

(6]

(7]

(8]

(9]

The problem to handle complex polygonal meshes has not been[10]

addressed in this paper. In priciple, we can either use mesh d

mation techniques to remove vertices and triangles in gaaraly

flat regions of a surface or (in the context of subdivisiomteques)

we can avoid the exponentially increasing complexity bylyppg
adaptive refinement techniques.
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