问题背景
给你一个下标从 000 开始、长度为 nnn 的整数数组 numsnumsnums,和两个整数 lowerlowerlower 和 upperupperupper,返回 公平数对的数目 。
如果 (i,j)(i, j)(i,j) 数对满足以下情况,则认为它是一个 公平数对 :
- 0≤i<j<n0 \le i < j < n0≤i<j<n,且
- lower≤nums[i]+nums[j]≤upperlower\le nums[i] + nums[j] \le upperlower≤nums[i]+nums[j]≤upper
数据约束
- 1≤nums.length≤1051 \le nums.length \le 10 ^ 51≤nums.length≤105
- nums.length=nnums.length = nnums.length=n
- −109≤nums[i]≤109-10 ^ 9 \le nums[i] \le 10 ^ 9−109≤nums[i]≤109
- −109≤lower≤upper≤109-10 ^ 9 \le lower \le upper \le 10 ^ 9−109≤lower≤upper≤109
解题过程
对于任意一个 nums[j]nums[j]nums[j],能与它构成公平数对的 nums[i]nums[i]nums[i] 范围是 lower−nums[i]≤nums[j]≤upper−nums[i]lower - nums[i] \le nums[j] \le upper - nums[i]lower−nums[i]≤nums[j]≤upper−nums[i]。
由于题目要求只是从数组中挑选两个数字,数组中元素的顺序不影响最终的结果,可以先排序,用二分查找。
具体实现
class Solution {
public long countFairPairs(int[] nums, int lower, int upper) {
Arrays.sort(nums);
long res = 0;
for (int i = 0; i < nums.length; i++) {
int right = binarySearch(nums, i, upper - nums[i] + 1);
int left = binarySearch(nums, i, lower - nums[i]);
res += right - left;
}
return res;
}
private int binarySearch(int[] nums, int right, int target) {
int left = 0;
while (left < right) {
int mid = left + ((right - left) >>> 1);
if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
}
}