问题背景
一个数组的 分数 定义为数组之和 乘以 数组的长度。
比方说,[1,2,3,4,5][1, 2, 3, 4, 5][1,2,3,4,5] 的分数为 (1+2+3+4+5)×5=75(1 + 2 + 3 + 4 + 5) \times 5 = 75(1+2+3+4+5)×5=75。
给你一个正整数数组 numsnumsnums 和一个整数 kkk,请你返回 numsnumsnums 中分数 严格小于 kkk 的 非空整数子数组数目。
子数组 是数组中的一个连续元素序列。
数据约束
- 1≤nums.length≤1051 \le nums.length \le 10 ^ 51≤nums.length≤105
- 1≤nums[i]≤1051 \le nums[i] \le 10 ^ 51≤nums[i]≤105
- 1≤k≤10151\le k \le 10 ^ {15}1≤k≤1015
解题过程
由于 numsnumsnums 中的元素都是正整数,得分随子数组的长度增加而增大,有单调性,适合滑窗。
需要注意的是,涉及到乘法运算数据范围比较大,要防止溢出。
具体实现
class Solution {
public long countSubarrays(int[] nums, long k) {
long res = 0;
long sum = 0;
for (int left = 0, right = 0; right < nums.length; right++) {
sum += nums[right];
while (sum * (right - left + 1) >= k) {
sum -= nums[left++];
}
res += right - left + 1;
}
return res;
}
}