Gram\mathrm{Gram}Gram矩阵的定义
定义:nnn维欧式空间中任意k(k≤n)k(k \le n)k(k≤n)个向量α1,α2,⋯ ,αk\alpha_1,\alpha_2,\cdots,\alpha_kα1,α2,⋯,αk的内积所组成的矩阵Δ(α1,α2,⋯ ,αk)=((α1,α1)(α1,α2)⋯(α1,αk)(α2,α1)(α2,α2)⋯(α2,αk)⋯⋯⋯⋯(αk,α1)(αk,α2)⋯(αk,αk))\Delta(\alpha_1,\alpha_2,\cdots,\alpha_k)=\left(\begin{array}{cccc}(\alpha_1,\alpha_1)&(\alpha_1,\alpha_2)&\cdots&(\alpha_1,\alpha_k) \\ (\alpha_2,\alpha_1)&(\alpha_2,\alpha_2)&\cdots & (\alpha_2,\alpha_k)\\ \cdots&\cdots&\cdots& \cdots \\ (\alpha_k,\alpha_1)&(\alpha_k,\alpha_2)&\cdots & (\alpha_k,\alpha_k)\end{array} \right)Δ(α1,α2,⋯,αk)=⎝⎜⎜⎛(α1,α1)(α2,α1)⋯(αk,α1)(α1,α2)(α2,α2)⋯(αk,α2)⋯⋯⋯⋯(α1,αk)(α2,αk)⋯(αk,αk)⎠⎟⎟⎞称为kkk个向量α1,α2,⋯ ,αk\alpha_1,\alpha_2,\cdots,\alpha_kα1,α2,⋯,αk的Gram\mathrm{Gram}Gram矩阵。
Gram\mathrm{Gram}Gram矩阵的意义
Gram\mathrm{Gram}Gram矩阵可以看做特征之间的协方差矩阵,在特征图中,每个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram\mathrm{Gram}Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram\mathrm{Gram}Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram\mathrm{Gram}Gram有助于把握整个图像的大体风格。有了表示风格的Gram\mathrm{Gram}Gram矩阵,要度量两个图像风格的差异,只需比较他们Gram\mathrm{Gram}Gram矩阵的差异即可。
Gram\mathrm{Gram}Gram矩阵用于度量各个维度自己的特性以及各个维度之间的关系。内积之后得到的多尺度矩阵中,对角线元素提供了不同特征图各自的信息,其余元素提供了不同特征图之间的相关信息。这样一个矩阵,既能体现出有哪些特征,又能体现出不同特征间的紧密程度。