Gram矩阵介绍

Gram矩阵是欧式空间中多个向量内积形成的矩阵,常用于衡量特征间的相关性和风格差异。它体现了特征自身的强度和特征间的相互作用,特别是在图像风格分析中,通过比较Gram矩阵的差异来评估图像风格的相似性。Gram矩阵的对角线元素表示特征强度,非对角线元素则反映特征的相关性。在实际应用中,Gram矩阵被用于度量特征之间的关系,以及度量图像的风格特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Gram\mathrm{Gram}Gram矩阵的定义

定义:nnn维欧式空间中任意k(k≤n)k(k \le n)k(kn)个向量α1,α2,⋯ ,αk\alpha_1,\alpha_2,\cdots,\alpha_kα1,α2,,αk的内积所组成的矩阵Δ(α1,α2,⋯ ,αk)=((α1,α1)(α1,α2)⋯(α1,αk)(α2,α1)(α2,α2)⋯(α2,αk)⋯⋯⋯⋯(αk,α1)(αk,α2)⋯(αk,αk))\Delta(\alpha_1,\alpha_2,\cdots,\alpha_k)=\left(\begin{array}{cccc}(\alpha_1,\alpha_1)&(\alpha_1,\alpha_2)&\cdots&(\alpha_1,\alpha_k) \\ (\alpha_2,\alpha_1)&(\alpha_2,\alpha_2)&\cdots & (\alpha_2,\alpha_k)\\ \cdots&\cdots&\cdots& \cdots \\ (\alpha_k,\alpha_1)&(\alpha_k,\alpha_2)&\cdots & (\alpha_k,\alpha_k)\end{array} \right)Δ(α1,α2,,αk)=(α1,α1)(α2,α1)(αk,α1)(α1,α2)(α2,α2)(αk,α2)(α1,αk)(α2,αk)(αk,αk)称为kkk个向量α1,α2,⋯ ,αk\alpha_1,\alpha_2,\cdots,\alpha_kα1,α2,,αkGram\mathrm{Gram}Gram矩阵。

Gram\mathrm{Gram}Gram矩阵的意义

Gram\mathrm{Gram}Gram矩阵可以看做特征之间的协方差矩阵,在特征图中,每个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram\mathrm{Gram}Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram\mathrm{Gram}Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram\mathrm{Gram}Gram有助于把握整个图像的大体风格。有了表示风格的Gram\mathrm{Gram}Gram矩阵,要度量两个图像风格的差异,只需比较他们Gram\mathrm{Gram}Gram矩阵的差异即可。
Gram\mathrm{Gram}Gram矩阵用于度量各个维度自己的特性以及各个维度之间的关系。内积之后得到的多尺度矩阵中,对角线元素提供了不同特征图各自的信息,其余元素提供了不同特征图之间的相关信息。这样一个矩阵,既能体现出有哪些特征,又能体现出不同特征间的紧密程度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值