NVIDIA Jetson YOLOv5 tensorRT部署和加速 C++版

本文介绍了在NVIDIA Jetson AGX Xavier上使用tensorRT部署YOLOv5 v6.0模型以加速推理过程的方法。通过C++版本的tensorRTx,详细步骤包括模型权重转换、配置修改、编译运行,并讨论了批处理大小对加速的影响。实测批处理大小为8时,推理速度提升约3.8倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在实现NVIDIA Jetson AGX Xavier 部署YOLOv5的深度学习环境,然后能正常推理跑模型后;发现模型速度不够快,于是使用tensorRT部署,加速模型,本文介绍C++版本的。

NVIDIA Jetson YOLOv5应用与部署_一颗小树x的博客-CSDN博客

版本介绍:yolov5 v6.0、tensorrtx;Jetpack 4.5 [L4T 32.5.0]、CUDA: 10.2.89。

我测试了 kitti 数据集的100张图片:加速后每一张图像,平均推理时间是22ms,感觉还行。

目录

一、下载yolov5 v6.0和tensorrtx

二、生成 xxx.wts文件

三、修改配置

四、编译tensorrtx

五、运行

六、解析关键代码

七、Batch size 进一步加速实验


一、下载yolov5 v6.0和tensorrtx

yolov5 v6.0版本,下载来至 yolov5 release v6.0,


                
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一颗小树x

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值