前言
在实现NVIDIA Jetson AGX Xavier 部署YOLOv5的深度学习环境,然后能正常推理跑模型后;发现模型速度不够快,于是使用tensorRT部署,加速模型,本文介绍C++版本的。
NVIDIA Jetson YOLOv5应用与部署_一颗小树x的博客-CSDN博客
版本介绍:yolov5 v6.0、tensorrtx;Jetpack 4.5 [L4T 32.5.0]、CUDA: 10.2.89。
我测试了 kitti 数据集的100张图片:加速后每一张图像,平均推理时间是22ms,感觉还行。
目录
一、下载yolov5 v6.0和tensorrtx
yolov5 v6.0版本,下载来至 yolov5 release v6.0,