YarnAllocator:Container killed by YARN for exceeding memory limits. spark.yarn.executor.memoryOverhe

当Spark运行时遇到`memoryOverhead+memory>MonitorMemory`错误,可以通过调整配置解决。增加`spark.sql.shuffle.partitions`的值或者增大executor.memory,但不超过最大MonitorMemory。如果已达到最大仍报错,可尝试减少Executor的并发核心数,增加Executor的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原因:运行时 memoryOverhead+memory > MonitorMemory

解决方法:通过-–conf spark.sql.shuffle.partitions=XXX增大partitions个数;或增大executor.memory的大小,不超过(Max)MonitorMemory即可。若已经到max仍然报错,可以减少单个Executor的并发数(cores),增大Executor数量。

 
<think>嗯,我现在遇到了YarnSchedulerBackend容器因为退出状态码143被标记为失败的问题。首先,我需要理解状态码143代表什么。记得之前学过,Linux中的退出状态码如果超过128,通常是由信号引起的。143减去128等于15,而15对应的信号是SIGTERM。这说明容器被发送了SIGTERM信号,导致进程终止。这可能意味着YARN主动终止了容器,或者是其他组件触发了终止。 接下来,我需要考虑可能的原因。根据引用中的信息,用户提到YARN应用已经结束,可能被杀死或无法继续运行[^1]。另外,有提到Spark Thrift服务正常退出,但YARN日志显示与driver端连接断开[^3]。这提示可能的因素包括资源不足、任务超时、应用程序自身错误或网络问题。 首先检查资源分配。容器可能因为内存或CPU不足而被YARN杀死。需要查看应用程序的资源请求是否合理,并确保集群有足够资源。如果资源不足,YARN会主动终止容器以释放资源。可以通过调整spark.executor.memoryspark.executor.cores参数来优化资源配置。 然后是超时设置。如果应用程序的响应时间超过YARN的配置阈值,比如yarn.nodemanager.sleep-delay-before-sigkill.ms,容器可能会被终止。需要检查相关的超时参数,适当延长等待时间,避免误杀。 接下来是日志分析。查看应用程序的日志和YARN的日志(如yarn logs -applicationId <app_id>),寻找具体的错误信息。例如,引用中提到的小文件传输错误可能导致部分任务失败[^2],虽然这里的问题不同,但日志分析是关键步骤。 还要考虑应用程序自身的优雅退出机制。是否有代码中主动调用了System.exit(143)?或者是否有未处理的异常导致进程终止?需要检查代码逻辑,确保正确处理异常,避免非预期的退出。 网络问题也不容忽视。如果Driver和Executor之间的连接不稳定,可能导致YARN误判为失败。需要检查集群网络状况,确保节点间通信畅通。引用中的连接断开问题可能与此相关,需要进一步排查。 其他可能因素包括第三方工具或脚本发送了SIGTERM信号,或者容器健康检查失败。需要检查是否有外部进程干扰,以及健康检查配置是否合理。 解决方法的话,首先调整资源配置,确保足够的内存和CPU。然后调整超时参数,如增加yarn.nodemanager.sleep-delay-before-sigkill.ms的值。接着详细分析日志,定位具体错误。优化应用程序代码,处理异常,并检查网络问题。如果使用Spark,可以启用动态资源分配来灵活调整资源使用。 如果这些步骤仍无法解决,可能需要更深入的集群监控,检查硬件故障或其他系统级问题。同时,参考社区的最佳实践和类似问题的解决方案,比如确保文件传输前压缩以减少失败,虽然场景不同,但思路类似,优化资源使用和传输效率可能有帮助。 总结下来,问题可能由资源不足、配置不当、代码错误或网络问题引起,需要逐步排查各个可能因素,结合日志分析和配置调整来解决。</think>### 问题分析 退出状态码 `143` 表示容器被发送了 `SIGTERM` 信号(`143 = 128 + 15`,其中 `15` 对应 `SIGTERM`)。此问题通常由以下原因导致: 1. **资源不足**:容器因内存或 CPU 超限被 YARN 主动终止。 2. **超时设置**:任务响应超时或心跳丢失触发 YARN 强制终止。 3. **应用程序主动退出**:代码逻辑错误或未处理异常导致进程终止。 4. **网络问题**:Driver 与 Executor 通信中断,触发容器释放。 --- ### 解决方案步骤 #### 1. **检查资源分配** - **现象**:容器因内存不足被终止时,YARN 日志会显示类似 `Container killed by YARN for exceeding memory limits`。 - **操作**: - 调整资源参数,例如在 Spark 中设置: ```bash --conf spark.executor.memory=8g --conf spark.executor.cores=4 ``` - 确保集群资源充足,避免过度分配。 #### 2. **调整超时配置** - **现象**:任务因长时间无响应被终止。 - **操作**: - 修改 YARN 超时参数(需在 `yarn-site.xml` 中配置): ```xml <property> <name>yarn.nodemanager.sleep-delay-before-sigkill.ms</name> <value>60000</value> <!-- 延长等待时间 --> </property> ``` - 增加 Spark 的心跳间隔: ```bash --conf spark.executor.heartbeatInterval=60s ``` #### 3. **分析应用程序日志** - **关键操作**: - 通过 `yarn logs -applicationId <app_id>` 查看完整日志,定位错误根源。 - 关注日志中的 `OutOfMemoryError` 或 `Connection reset` 等关键信息[^1]。 #### 4. **优化代码逻辑** - **示例问题**: - 未处理的任务阻塞或死锁导致进程无响应。 - **操作**: - 添加 `try-catch` 块捕获异常,避免进程意外退出。 - 使用监控工具(如 JMX)检查线程状态。 #### 5. **排查网络问题** - **现象**:容器因网络抖动与 Driver 断开连接。 - **操作**: - 使用 `telnet` 或 `ping` 测试节点间通信。 - 在 Spark 中启用重试机制: ```bash --conf spark.network.timeout=600s --conf spark.shuffle.io.maxRetries=5 ``` --- ### 附加建议 - **启用动态资源分配**(Spark 场景): ```bash --conf spark.dynamicAllocation.enabled=true --conf spark.dynamicAllocation.minExecutors=1 ``` - **监控工具**:通过 YARN 的 ResourceManager Web UI 或 Prometheus + Grafana 实时监控资源使用情况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值