Labelme分割标注软件

相关重要博文链接:
MS COCO数据集介绍以及pycocotools使用
Labelme项目源代码

Labelme是一款经典的标注工具,支持目标检测、语义分割、实例分割等任务。今天针对分割任务的数据标注进行简单的介绍。开源项目地址
在这里插入图片描述

0、VOC数据集目录

在这里插入图片描述

1、环境配置与安装

1.1 创建conda虚拟环境(建议)

为了不影响其他python环境,建议新建一个环境。(不想新建可以跳过)
这里以创建一个名为labelme_env,python版本为3.8的环境为例:

conda create -n labelme_env python=3.8

创建完成后,进入新环境:

conda activate labelme_env

1.2 安装Labelme

安装非常简单,直接使用pip安装即可:

pip install labelme

安装pycocotools

# ubutnu
pip install pycocotools
# Windows
pip install pycocotools-windows

安装完成后在终端输入labelme即可启动:

labelme

在这里插入图片描述

2、简单使用

在这里插入图片描述

├── img_data: 存放你要标注的所有图片
├── data_annotated: 存放后续标注好的所有json文件
└── labels.txt: 所有类别信息

2.1 创建label标签文件

__ignore__
_background_
dog
cat

在这里插入图片描述

2.2 启动labelme

在这里插入图片描述

labelme --labels labels.txt

在这里插入图片描述
在这里插入图片描述

2.3 打开文件/文件夹

在这里插入图片描述
在这里插入图片描述

2.4 设置保存结果路径

在这里插入图片描述
在这里插入图片描述

2.5 标注目标

在这里插入图片描述
在这里插入图片描述

2.6 保存json文件格式

在这里插入图片描述

{
   
   
  "version": "4.5.9",
  "flags": {
   
   },
  "shapes": [
    {
   
   
      "label": "dog",
      "points": [
        [
          108.09090909090907,
          687.1818181818181
        ],
        ....
        [
          538.090909090909,
          668.090909090909
        ],
        [
          534.4545454545454,
          689.0
        ]
      ],
      "group_id": null,
      "shape_type": "polygon",
      "flags": {
   
   }
    }
  ],
  "imagePath": "../img_data/1.jpg",
  "imageData": null,
  "imageHeight": 690,
  "imageWidth": 690
}

3 格式转换

3.1 转换语义分割标签

原作者为了方便,也提供了一个脚本,帮我们方便的将json文件转换成PASCAL VOC的语义分割标签格式。示例项目链接:
https://github.com/wkentaro/labelme/tree/master/examples/semantic_segmentation
在这里插入图片描述

python labelme2voc.py data_annotated data_dataset_voc --labels labels.txt

执行后会生成如下目录:

- data_dataset_voc/JPEGImages
- data_dataset_voc/SegmentationClass
- data_dataset_voc/SegmentationClassPNG
- data_dataset_voc/SegmentationClassVisualization
- data_dataset_voc/class_names.txt

在这里插入图片描述
在这里插入图片描述
class_names.txt存储的是所有的类别信息,包括背景。

_background_
dog
cat

在这里插入图片描述

#!/usr/bin/env python

from __future__ import print_function

import argparse
import glob
import os
import os.path as osp
import sys

import imgviz
import numpy as np

import labelme


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument("input_dir", help="Input annotated directory")
    parser.add_argument("output_dir", help="Output dataset directory")
    parser.add_argument(
        "--labels", help="Labels file or comma separated text", required=True
    )
    parser.add_argument(
        "--noobject", help="Flag not to generate object label", action="store_true"
    )
    parser.add_argument(
        "--nonpy", help="Flag not to generate .npy files", action="store_true"
    )
    parser.add_argument(
        "--noviz", help="Flag to disable visualization", action="store_true"
    )
    args = parser.parse_args()

    if osp.exists(args.output_dir):
        print("Output directory already exists:", args.output_dir)
        sys.exit(1)
    os.makedirs(args.output_dir)
    os.makedirs(osp.join(args.output_dir, "JPEGImages"))
    os.makedirs(osp.join(args.output_dir, "SegmentationClass"))
    if not args.nonpy:
        os.makedirs(osp.join(args.output_dir, "SegmentationClassNpy"))
    if not args.noviz:
        os.makedirs(osp.join(args.output_dir, "SegmentationClassVisualization"))
    if not args.noobject:
        os.makedirs(osp.join(args.output_dir, "SegmentationObject"))
        if not args.nonpy:
            os.makedirs(osp.join(args.output_dir, "SegmentationObjectNpy"))
        if not args.noviz:
            os.makedirs(osp.join(args.output_dir, "SegmentationObjectVisualization"))
    print("Creating dataset:", args.output_dir)
    if osp.exists(args.labels):
        with open(args.labels) as f:
            labels = [label.strip() for label in f if label]
    else:
        labels = [label.strip() for label in args.labels.split(",")]

    class_names = []
    class_name_to_id = {
   
   }
    for i, label in enumerate(labels)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值