TensorFlow 用 hashtable 的意义

TensorFlow的hashtable主要用于存储不连续ID的embedding,解决在大量ID中存在空值问题。例如,当ID范围从1到100000,但实际上只有1到500的ID有对应的值,此时可以利用hashtable存储完整的embedding矩阵,通过embedding_lookup获取每个有效ID的embedding向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TF的hashtable用来存不连续的id/int的embedding的,

就是比如id从1-100000,但1-100000里有很多值是空的,

如果id就是1-500,是满的,从1-500都有值,可以用一个 501 * hidden_size 的embedding_matrix存embedding,然后用embedding_lookup接口读每个id的embedding

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-Love-Coding-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值