xgboost / lightgbm for NLP 添加一些 写死的/hardcode 的比如同义词 “特征”/规则

在two-text-match任务中,通过将特定词汇视为同义词并设定匹配度,可以提升模型的效果。例如,若认为两个词是同义词,那么包含它们的句子匹配度设为1;反之,则设为-1,以此增加特征和规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

two-text-match这个任务,如果我把

"谁写的","谁的著作"

这两个词看为同义词,则我强行指定 分别出现这两个词的 这对句子match程度为1

如果我把

"古代流放", "流放"

不看成同义词,则我强行指定 分别出现这两个词的 这对句子match程度为-1

然后

add_data = train_x[train_x["hardcode"]==1] # 过滤
for i in range(1000): # 为了在训练时多出现
    tr
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-Love-Coding-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值