pandas dataframe数据聚合groupby、agg、privot基于sum统计详解及实例

本文详细讲解了如何使用Pandas的groupby和pivot函数进行数据聚合,特别是结合sum函数进行统计分析。通过实例展示了在数据分析中如何根据特定字段对数据进行分组,并进行求和、平均值等操作。同时,介绍了透视表的概念,它是数据汇总的有效工具,允许快速计算和组合字段。文章引用了多个参考资料,适合对数据处理感兴趣的读者深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas dataframe数据聚合groupby、agg、privot基于sum统计详解及实例

知道了sum、那么min、max、mean、median都是举一反三的事情了。

在日常的数据分析中,经常需要将数据根据某个(多个)字段划分为不同的群体(group)进行分析,如电商领域将全国的总销售额根据省份进行划分,分析各省销售额的变化情况,社交领域将用户根据画像(性别、年龄)进行细分,研究用户的使用情况和偏好等。

在Pandas中,上述的数据处理操作主要运用groupby完成。

聚合(aggregate)操作是groupby后非常常见的操作,会写SQL的朋友对此应该是非常熟悉了。聚合操作可以用来求和、均值、最大值、最小值等;

 

goupby的底层逻辑:和apply的千层万缕,还是老规矩、看图说话:

 

 

See the source image

 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值