机器学习特征工程之特征缩放+无量纲化:最大绝对值缩放(MaxAbsScaler)

特征缩放是机器学习预处理的重要步骤,能加快模型收敛速度并提高精度。最大绝对值缩放(MaxAbsScaler)是一种无量纲化方法,通过计算每个特征的最大绝对值来缩放数据,使得特征值在[-1, 1]之间。这种方法适用于数值范围差异极大的情况,有助于避免梯度下降过程中因步长问题导致的慢速收敛。" 100068440,7532583,RL-Cache: 使用强化学习提升内容分发缓存命中率,"['缓存算法', '机器学习', '内容分发', '网络优化', '深度学习']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 机器学习特征工程之特征缩放+无量纲化:最大绝对值缩放(MaxAbsScaler)

在Andrew Ng的机器学习课程里面,讲到使用梯度下降的时候应当进行特征缩放(Feature Scaling)。进行缩放后,多维特征将具有相近的尺度,这将帮助梯度下降算法更快地收敛。

你的预处理数据集中可能包含各种各样、不同比例的特征字段,比如美元、千克、价格,有的特征列数值范围在100以内,有的却达到几百万,差异很大。

很多机器学习模型不希望有这样大的差异,如果数据集各个属性之间的数值差异越小,则模型表现的会越好。

1) 提升模型的收敛速度
如下图,x1的取值为0-2000,而x2的取值为1-5,假如只有这两个特征,对其进行优化时,会得到一个窄长的椭圆形,导致在梯度下降时,梯度的方向为垂直等高线的方向而走之字形路线,这样会使迭代很慢,相比之下,右图的迭代就会很快(理解:也就是步长走多走少方向总是对的,不会走偏)

2)提升模型的精度
归一化的另一好处是提高精度,这在涉及到一些距离计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值